Computer Science > Computation and Language
[Submitted on 7 Apr 2023]
Title:What does ChatGPT return about human values? Exploring value bias in ChatGPT using a descriptive value theory
View PDFAbstract:There has been concern about ideological basis and possible discrimination in text generated by Large Language Models (LLMs). We test possible value biases in ChatGPT using a psychological value theory. We designed a simple experiment in which we used a number of different probes derived from the Schwartz basic value theory (items from the revised Portrait Value Questionnaire, the value type definitions, value names). We prompted ChatGPT via the OpenAI API repeatedly to generate text and then analyzed the generated corpus for value content with a theory-driven value dictionary using a bag of words approach. Overall, we found little evidence of explicit value bias. The results showed sufficient construct and discriminant validity for the generated text in line with the theoretical predictions of the psychological model, which suggests that the value content was carried through into the outputs with high fidelity. We saw some merging of socially oriented values, which may suggest that these values are less clearly differentiated at a linguistic level or alternatively, this mixing may reflect underlying universal human motivations. We outline some possible applications of our findings for both applications of ChatGPT for corporate usage and policy making as well as future research avenues. We also highlight possible implications of this relatively high-fidelity replication of motivational content using a linguistic model for the theorizing about human values.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.