Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs.CL

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computation and Language

  • New submissions
  • Cross-lists
  • Replacements

See recent articles

Showing new listings for Friday, 6 June 2025

Total of 230 entries
Showing up to 2000 entries per page: fewer | more | all

New submissions (showing 93 of 93 entries)

[1] arXiv:2506.04344 [pdf, html, other]
Title: GEM: Empowering LLM for both Embedding Generation and Language Understanding
Caojin Zhang, Qiang Zhang, Ke Li, Sai Vidyaranya Nuthalapati, Benyu Zhang, Jason Liu, Serena Li, Lizhu Zhang, Xiangjun Fan
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Large decoder-only language models (LLMs) have achieved remarkable success in generation and reasoning tasks, where they generate text responses given instructions. However, many applications, e.g., retrieval augmented generation (RAG), still rely on separate embedding models to generate text embeddings, which can complicate the system and introduce discrepancies in understanding of the query between the embedding model and LLMs. To address this limitation, we propose a simple self-supervised approach, Generative Embedding large language Model (GEM), that enables any large decoder-only LLM to generate high-quality text embeddings while maintaining its original text generation and reasoning capabilities. Our method inserts new special token(s) into a text body, and generates summarization embedding of the text by manipulating the attention mask. This method could be easily integrated into post-training or fine tuning stages of any existing LLMs. We demonstrate the effectiveness of our approach by applying it to two popular LLM families, ranging from 1B to 8B parameters, and evaluating the transformed models on both text embedding benchmarks (MTEB) and NLP benchmarks (MMLU). The results show that our proposed method significantly improves the original LLMs on MTEB while having a minimal impact on MMLU. Our strong results indicate that our approach can empower LLMs with state-of-the-art text embedding capabilities while maintaining their original NLP performance

[2] arXiv:2506.04364 [pdf, html, other]
Title: Effects of Speaker Count, Duration, and Accent Diversity on Zero-Shot Accent Robustness in Low-Resource ASR
Zheng-Xin Yong, Vineel Pratap, Michael Auli, Jean Maillard
Comments: Accepted to INTERSPEECH 2025
Subjects: Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

To build an automatic speech recognition (ASR) system that can serve everyone in the world, the ASR needs to be robust to a wide range of accents including unseen accents. We systematically study how three different variables in training data -- the number of speakers, the audio duration per each individual speaker, and the diversity of accents -- affect ASR robustness towards unseen accents in a low-resource training regime. We observe that for a fixed number of ASR training hours, it is more beneficial to increase the number of speakers (which means each speaker contributes less) than the number of hours contributed per speaker. We also observe that more speakers enables ASR performance gains from scaling number of hours. Surprisingly, we observe minimal benefits to prioritizing speakers with different accents when the number of speakers is controlled. Our work suggests that practitioners should prioritize increasing the speaker count in ASR training data composition for new languages.

[3] arXiv:2506.04373 [pdf, html, other]
Title: Mechanistic Decomposition of Sentence Representations
Matthieu Tehenan, Vikram Natarajan, Jonathan Michala, Milton Lin, Juri Opitz
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Sentence embeddings are central to modern NLP and AI systems, yet little is known about their internal structure. While we can compare these embeddings using measures such as cosine similarity, the contributing features are not human-interpretable, and the content of an embedding seems untraceable, as it is masked by complex neural transformations and a final pooling operation that combines individual token embeddings. To alleviate this issue, we propose a new method to mechanistically decompose sentence embeddings into interpretable components, by using dictionary learning on token-level representations. We analyze how pooling compresses these features into sentence representations, and assess the latent features that reside in a sentence embedding. This bridges token-level mechanistic interpretability with sentence-level analysis, making for more transparent and controllable representations. In our studies, we obtain several interesting insights into the inner workings of sentence embedding spaces, for instance, that many semantic and syntactic aspects are linearly encoded in the embeddings.

[4] arXiv:2506.04381 [pdf, html, other]
Title: Hierarchical Text Classification Using Contrastive Learning Informed Path Guided Hierarchy
Neeraj Agrawal, Saurabh Kumar, Priyanka Bhatt, Tanishka Agarwal
Comments: arXiv admin note: text overlap with arXiv:2203.03825 by other authors
Journal-ref: ECAI 2023, pp. 19-26. IOS Press, 2023
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Hierarchical Text Classification (HTC) has recently gained traction given the ability to handle complex label hierarchy. This has found applications in domains like E- commerce, customer care and medicine industry among other real-world applications. Existing HTC models either encode label hierarchy separately and mix it with text encoding or guide the label hierarchy structure in the text encoder. Both approaches capture different characteristics of label hierarchy and are complementary to each other. In this paper, we propose a Hierarchical Text Classification using Contrastive Learning Informed Path guided hierarchy (HTC-CLIP), which learns hierarchy-aware text representation and text informed path guided hierarchy representation using contrastive learning. During the training of HTC-CLIP, we learn two different sets of class probabilities distributions and during inference, we use the pooled output of both probabilities for each class to get the best of both representations. Our results show that the two previous approaches can be effectively combined into one architecture to achieve improved performance. Tests on two public benchmark datasets showed an improvement of 0.99 - 2.37% in Macro F1 score using HTC-CLIP over the existing state-of-the-art models.

[5] arXiv:2506.04385 [pdf, html, other]
Title: MELABenchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource Maltese NLP
Kurt Micallef, Claudia Borg
Comments: ACL 2025 Findings Camera-Ready
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) have demonstrated remarkable performance across various Natural Language Processing (NLP) tasks, largely due to their generalisability and ability to perform tasks without additional training. However, their effectiveness for low-resource languages remains limited. In this study, we evaluate the performance of 55 publicly available LLMs on Maltese, a low-resource language, using a newly introduced benchmark covering 11 discriminative and generative tasks. Our experiments highlight that many models perform poorly, particularly on generative tasks, and that smaller fine-tuned models often perform better across all tasks. From our multidimensional analysis, we investigate various factors impacting performance. We conclude that prior exposure to Maltese during pre-training and instruction-tuning emerges as the most important factor. We also examine the trade-offs between fine-tuning and prompting, highlighting that while fine-tuning requires a higher initial cost, it yields better performance and lower inference costs. Through this work, we aim to highlight the need for more inclusive language technologies and recommend that researchers working with low-resource languages consider more "traditional" language modelling approaches.

[6] arXiv:2506.04389 [pdf, html, other]
Title: Building a Few-Shot Cross-Domain Multilingual NLU Model for Customer Care
Saurabh Kumar, Sourav Bansal, Neeraj Agrawal, Priyanka Bhatt
Journal-ref: ECAI 2023. IOS Press, 2023. 3212-3217
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Customer care is an essential pillar of the e-commerce shopping experience with companies spending millions of dollars each year, employing automation and human agents, across geographies (like US, Canada, Mexico, Chile), channels (like Chat, Interactive Voice Response (IVR)), and languages (like English, Spanish). SOTA pre-trained models like multilingual-BERT, fine-tuned on annotated data have shown good performance in downstream tasks relevant to Customer Care. However, model performance is largely subject to the availability of sufficient annotated domain-specific data. Cross-domain availability of data remains a bottleneck, thus building an intent classifier that generalizes across domains (defined by channel, geography, and language) with only a few annotations, is of great practical value. In this paper, we propose an embedder-cum-classifier model architecture which extends state-of-the-art domain-specific models to other domains with only a few labeled samples. We adopt a supervised fine-tuning approach with isotropic regularizers to train a domain-specific sentence embedder and a multilingual knowledge distillation strategy to generalize this embedder across multiple domains. The trained embedder, further augmented with a simple linear classifier can be deployed for new domains. Experiments on Canada and Mexico e-commerce Customer Care dataset with few-shot intent detection show an increase in accuracy by 20-23% against the existing state-of-the-art pre-trained models.

[7] arXiv:2506.04405 [pdf, html, other]
Title: MedAgentGym: Training LLM Agents for Code-Based Medical Reasoning at Scale
Ran Xu, Yuchen Zhuang, Yishan Zhong, Yue Yu, Xiangru Tang, Hang Wu, May D. Wang, Peifeng Ruan, Donghan Yang, Tao Wang, Guanghua Xiao, Carl Yang, Yang Xie, Wenqi Shi
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.

[8] arXiv:2506.04408 [pdf, html, other]
Title: Unpacking Let Alone: Human-Scale Models Generalize to a Rare Construction in Form but not Meaning
Wesley Scivetti, Tatsuya Aoyama, Ethan Wilcox, Nathan Schneider
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Humans have a remarkable ability to acquire and understand grammatical phenomena that are seen rarely, if ever, during childhood. Recent evidence suggests that language models with human-scale pretraining data may possess a similar ability by generalizing from frequent to rare constructions. However, it remains an open question how widespread this generalization ability is, and to what extent this knowledge extends to meanings of rare constructions, as opposed to just their forms. We fill this gap by testing human-scale transformer language models on their knowledge of both the form and meaning of the (rare and quirky) English LET-ALONE construction. To evaluate our LMs we construct a bespoke synthetic benchmark that targets syntactic and semantic properties of the construction. We find that human-scale LMs are sensitive to form, even when related constructions are filtered from the dataset. However, human-scale LMs do not make correct generalizations about LET-ALONE's meaning. These results point to an asymmetry in the current architectures' sample efficiency between language form and meaning, something which is not present in human language learners.

[9] arXiv:2506.04409 [pdf, html, other]
Title: Empaths at SemEval-2025 Task 11: Retrieval-Augmented Approach to Perceived Emotions Prediction
Lev Morozov, Aleksandr Mogilevskii, Alexander Shirnin
Comments: Accepted to SemEval-2025, an ACL 2025 workshop
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

This paper describes EmoRAG, a system designed to detect perceived emotions in text for SemEval-2025 Task 11, Subtask A: Multi-label Emotion Detection. We focus on predicting the perceived emotions of the speaker from a given text snippet, labeling it with emotions such as joy, sadness, fear, anger, surprise, and disgust. Our approach does not require additional model training and only uses an ensemble of models to predict emotions. EmoRAG achieves results comparable to the best performing systems, while being more efficient, scalable, and easier to implement.

[10] arXiv:2506.04458 [pdf, other]
Title: Zero-Shot Open-Schema Entity Structure Discovery
Xueqiang Xu, Jinfeng Xiao, James Barry, Mohab Elkaref, Jiaru Zou, Pengcheng Jiang, Yunyi Zhang, Max Giammona, Geeth de Mel, Jiawei Han
Comments: 14 pages, 3 figures
Subjects: Computation and Language (cs.CL)

Entity structure extraction, which aims to extract entities and their associated attribute-value structures from text, is an essential task for text understanding and knowledge graph construction. Existing methods based on large language models (LLMs) typically rely heavily on predefined entity attribute schemas or annotated datasets, often leading to incomplete extraction results. To address these challenges, we introduce Zero-Shot Open-schema Entity Structure Discovery (ZOES), a novel approach to entity structure extraction that does not require any schema or annotated samples. ZOES operates via a principled mechanism of enrichment, refinement, and unification, based on the insight that an entity and its associated structure are mutually reinforcing. Experiments demonstrate that ZOES consistently enhances LLMs' ability to extract more complete entity structures across three different domains, showcasing both the effectiveness and generalizability of the method. These findings suggest that such an enrichment, refinement, and unification mechanism may serve as a principled approach to improving the quality of LLM-based entity structure discovery in various scenarios.

[11] arXiv:2506.04462 [pdf, html, other]
Title: Watermarking Degrades Alignment in Language Models: Analysis and Mitigation
Apurv Verma, NhatHai Phan, Shubhendu Trivedi
Comments: Published at the 1st Workshop on GenAI Watermarking, collocated with ICLR 2025. OpenReview: this https URL
Journal-ref: 1st Workshop on GenAI Watermarking, ICLR 2025
Subjects: Computation and Language (cs.CL); Cryptography and Security (cs.CR); Machine Learning (cs.LG)

Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives.
To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.

[12] arXiv:2506.04463 [pdf, html, other]
Title: Aligning Large Language Models with Implicit Preferences from User-Generated Content
Zhaoxuan Tan, Zheng Li, Tianyi Liu, Haodong Wang, Hyokun Yun, Ming Zeng, Pei Chen, Zhihan Zhang, Yifan Gao, Ruijie Wang, Priyanka Nigam, Bing Yin, Meng Jiang
Comments: Accepted to ACL 2025 Main Conference
Subjects: Computation and Language (cs.CL)

Learning from preference feedback is essential for aligning large language models (LLMs) with human values and improving the quality of generated responses. However, existing preference learning methods rely heavily on curated data from humans or advanced LLMs, which is costly and difficult to scale. In this work, we present PUGC, a novel framework that leverages implicit human Preferences in unlabeled User-Generated Content (UGC) to generate preference data. Although UGC is not explicitly created to guide LLMs in generating human-preferred responses, it often reflects valuable insights and implicit preferences from its creators that has the potential to address readers' questions. PUGC transforms UGC into user queries and generates responses from the policy model. The UGC is then leveraged as a reference text for response scoring, aligning the model with these implicit preferences. This approach improves the quality of preference data while enabling scalable, domain-specific alignment. Experimental results on Alpaca Eval 2 show that models trained with DPO and PUGC achieve a 9.37% performance improvement over traditional methods, setting a 35.93% state-of-the-art length-controlled win rate using Mistral-7B-Instruct. Further studies highlight gains in reward quality, domain-specific alignment effectiveness, robustness against UGC quality, and theory of mind capabilities. Our code and dataset are available at this https URL

[13] arXiv:2506.04494 [pdf, html, other]
Title: SQLens: An End-to-End Framework for Error Detection and Correction in Text-to-SQL
Yue Gong, Chuan Lei, Xiao Qin, Kapil Vaidya, Balakrishnan Narayanaswamy, Tim Kraska
Subjects: Computation and Language (cs.CL)

Text-to-SQL systems translate natural language (NL) questions into SQL queries, enabling non-technical users to interact with structured data. While large language models (LLMs) have shown promising results on the text-to-SQL task, they often produce semantically incorrect yet syntactically valid queries, with limited insight into their reliability. We propose SQLens, an end-to-end framework for fine-grained detection and correction of semantic errors in LLM-generated SQL. SQLens integrates error signals from both the underlying database and the LLM to identify potential semantic errors within SQL clauses. It further leverages these signals to guide query correction. Empirical results on two public benchmarks show that SQLens outperforms the best LLM-based self-evaluation method by 25.78% in F1 for error detection, and improves execution accuracy of out-of-the-box text-to-SQL systems by up to 20%.

[14] arXiv:2506.04516 [pdf, html, other]
Title: DRE: An Effective Dual-Refined Method for Integrating Small and Large Language Models in Open-Domain Dialogue Evaluation
Kun Zhao, Bohao Yang, Chen Tang, Siyuan Dai, Haoteng Tang, Chenghua Lin, Liang Zhan
Comments: arXiv admin note: text overlap with arXiv:2405.15924
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) excel at many tasks but struggle with ambiguous scenarios where multiple valid responses exist, often yielding unreliable results. Conversely, Small Language Models (SLMs) demonstrate robustness in such scenarios but are susceptible to misleading or adversarial inputs. We observed that LLMs handle negative examples effectively, while SLMs excel with positive examples. To leverage their complementary strengths, we introduce SLIDE (Small and Large Integrated for Dialogue Evaluation), a method integrating SLMs and LLMs via adaptive weighting. Building on SLIDE, we further propose a Dual-Refinement Evaluation (DRE) method to enhance SLM-LLM integration: (1) SLM-generated insights guide the LLM to produce initial evaluations; (2) SLM-derived adjustments refine the LLM's scores for improved accuracy. Experiments demonstrate that DRE outperforms existing methods, showing stronger alignment with human judgment across diverse benchmarks. This work illustrates how combining small and large models can yield more reliable evaluation tools, particularly for open-ended tasks such as dialogue evaluation.

[15] arXiv:2506.04521 [pdf, html, other]
Title: Please Translate Again: Two Simple Experiments on Whether Human-Like Reasoning Helps Translation
Di Wu, Seth Aycock, Christof Monz
Comments: 16 pages, 16 figures
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) demonstrate strong reasoning capabilities for many tasks, often by explicitly decomposing the task via Chain-of-Thought (CoT) reasoning. Recent work on LLM-based translation designs hand-crafted prompts to decompose translation, or trains models to incorporate intermediate steps.~\textit{Translating Step-by-step}~\citep{briakou2024translating}, for instance, introduces a multi-step prompt with decomposition and refinement of translation with LLMs, which achieved state-of-the-art results on WMT24. In this work, we scrutinise this strategy's effectiveness. Empirically, we find no clear evidence that performance gains stem from explicitly decomposing the translation process, at least for the models on test; and we show that simply prompting LLMs to ``translate again'' yields even better results than human-like step-by-step prompting. Our analysis does not rule out the role of reasoning, but instead invites future work exploring the factors for CoT's effectiveness in the context of translation.

[16] arXiv:2506.04534 [pdf, html, other]
Title: Is It JUST Semantics? A Case Study of Discourse Particle Understanding in LLMs
William Sheffield, Kanishka Misra, Valentina Pyatkin, Ashwini Deo, Kyle Mahowald, Junyi Jessy Li
Comments: To be published in Findings of The 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025). The main paper is 5 pages and contains 3 figures and 1 table. In total, the paper is 12 pages and contains 8 figures and 5 tables (References + Appendix)
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Discourse particles are crucial elements that subtly shape the meaning of text. These words, often polyfunctional, give rise to nuanced and often quite disparate semantic/discourse effects, as exemplified by the diverse uses of the particle "just" (e.g., exclusive, temporal, emphatic). This work investigates the capacity of LLMs to distinguish the fine-grained senses of English "just", a well-studied example in formal semantics, using data meticulously created and labeled by expert linguists. Our findings reveal that while LLMs exhibit some ability to differentiate between broader categories, they struggle to fully capture more subtle nuances, highlighting a gap in their understanding of discourse particles.

[17] arXiv:2506.04535 [pdf, html, other]
Title: BSBench: will your LLM find the largest prime number?
K. O. T. Erziev
Comments: 7 + 2 pages
Subjects: Computation and Language (cs.CL)

We propose that benchmarking LLMs on questions which have no reasonable answer actually isn't as silly as it sounds. We also present a benchmark that allows such testing and a method to modify the existing datasets, and discover that existing models demonstrate a performance far from the perfect on such questions. Our code and data artifacts are available at this https URL

[18] arXiv:2506.04557 [pdf, html, other]
Title: SSA-COMET: Do LLMs Outperform Learned Metrics in Evaluating MT for Under-Resourced African Languages?
Senyu Li, Jiayi Wang, Felermino D. M. A. Ali, Colin Cherry, Daniel Deutsch, Eleftheria Briakou, Rui Sousa-Silva, Henrique Lopes Cardoso, Pontus Stenetorp, David Ifeoluwa Adelani
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Evaluating machine translation (MT) quality for under-resourced African languages remains a significant challenge, as existing metrics often suffer from limited language coverage and poor performance in low-resource settings. While recent efforts, such as AfriCOMET, have addressed some of the issues, they are still constrained by small evaluation sets, a lack of publicly available training data tailored to African languages, and inconsistent performance in extremely low-resource scenarios. In this work, we introduce SSA-MTE, a large-scale human-annotated MT evaluation (MTE) dataset covering 13 African language pairs from the News domain, with over 63,000 sentence-level annotations from a diverse set of MT systems. Based on this data, we develop SSA-COMET and SSA-COMET-QE, improved reference-based and reference-free evaluation metrics. We also benchmark prompting-based approaches using state-of-the-art LLMs like GPT-4o and Claude. Our experimental results show that SSA-COMET models significantly outperform AfriCOMET and are competitive with the strongest LLM (Gemini 2.5 Pro) evaluated in our study, particularly on low-resource languages such as Twi, Luo, and Yoruba. All resources are released under open licenses to support future research.

[19] arXiv:2506.04572 [pdf, html, other]
Title: Demonstrations of Integrity Attacks in Multi-Agent Systems
Can Zheng, Yuhan Cao, Xiaoning Dong, Tianxing He
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding, code generation, and complex planning. Simultaneously, Multi-Agent Systems (MAS) have garnered attention for their potential to enable cooperation among distributed agents. However, from a multi-party perspective, MAS could be vulnerable to malicious agents that exploit the system to serve self-interests without disrupting its core functionality. This work explores integrity attacks where malicious agents employ subtle prompt manipulation to bias MAS operations and gain various benefits. Four types of attacks are examined: \textit{Scapegoater}, who misleads the system monitor to underestimate other agents' contributions; \textit{Boaster}, who misleads the system monitor to overestimate their own performance; \textit{Self-Dealer}, who manipulates other agents to adopt certain tools; and \textit{Free-Rider}, who hands off its own task to others. We demonstrate that strategically crafted prompts can introduce systematic biases in MAS behavior and executable instructions, enabling malicious agents to effectively mislead evaluation systems and manipulate collaborative agents. Furthermore, our attacks can bypass advanced LLM-based monitors, such as GPT-4o-mini and o3-mini, highlighting the limitations of current detection mechanisms. Our findings underscore the critical need for MAS architectures with robust security protocols and content validation mechanisms, alongside monitoring systems capable of comprehensive risk scenario assessment.

[20] arXiv:2506.04574 [pdf, html, other]
Title: Reasoning or Overthinking: Evaluating Large Language Models on Financial Sentiment Analysis
Dimitris Vamvourellis, Dhagash Mehta
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

We investigate the effectiveness of large language models (LLMs), including reasoning-based and non-reasoning models, in performing zero-shot financial sentiment analysis. Using the Financial PhraseBank dataset annotated by domain experts, we evaluate how various LLMs and prompting strategies align with human-labeled sentiment in a financial context. We compare three proprietary LLMs (GPT-4o, GPT-4.1, o3-mini) under different prompting paradigms that simulate System 1 (fast and intuitive) or System 2 (slow and deliberate) thinking and benchmark them against two smaller models (FinBERT-Prosus, FinBERT-Tone) fine-tuned on financial sentiment analysis. Our findings suggest that reasoning, either through prompting or inherent model design, does not improve performance on this task. Surprisingly, the most accurate and human-aligned combination of model and method was GPT-4o without any Chain-of-Thought (CoT) prompting. We further explore how performance is impacted by linguistic complexity and annotation agreement levels, uncovering that reasoning may introduce overthinking, leading to suboptimal predictions. This suggests that for financial sentiment classification, fast, intuitive "System 1"-like thinking aligns more closely with human judgment compared to "System 2"-style slower, deliberative reasoning simulated by reasoning models or CoT prompting. Our results challenge the default assumption that more reasoning always leads to better LLM decisions, particularly in high-stakes financial applications.

[21] arXiv:2506.04575 [pdf, other]
Title: Are LLMs Reliable Translators of Logical Reasoning Across Lexically Diversified Contexts?
Qingchuan Li, Jiatong Li, Zirui Liu, Mingyue Cheng, Yuting Zeng, Qi Liu, Tongxuan Liu
Subjects: Computation and Language (cs.CL)

Neuro-symbolic approaches combining large language models (LLMs) with solvers excels in logical reasoning problems need long reasoning chains. In this paradigm, LLMs serve as translators, converting natural language reasoning problems into formal logic formulas. Then reliable symbolic solvers return correct solutions. Despite their success, we find that LLMs, as translators, struggle to handle lexical diversification, a common linguistic phenomenon, indicating that LLMs as logic translators are unreliable in real-world scenarios. Moreover, existing logical reasoning benchmarks lack lexical diversity, failing to challenge LLMs' ability to translate such text and thus obscuring this issue. In this work, we propose SCALe, a benchmark designed to address this significant gap through **logic-invariant lexical diversification**. By using LLMs to transform original benchmark datasets into lexically diversified but logically equivalent versions, we evaluate LLMs' ability to consistently map diverse expressions to uniform logical symbols on these new datasets. Experiments using SCALe further confirm that current LLMs exhibit deficiencies in this capability. Building directly on the deficiencies identified through our benchmark, we propose a new method, MenTaL, to address this limitation. This method guides LLMs to first construct a table unifying diverse expressions before performing translation. Applying MenTaL through in-context learning and supervised fine-tuning (SFT) significantly improves the performance of LLM translators on lexically diversified text. Our code is now available at this https URL.

[22] arXiv:2506.04579 [pdf, html, other]
Title: Selecting Demonstrations for Many-Shot In-Context Learning via Gradient Matching
Jianfei Zhang, Bei Li, Jun Bai, Rumei Li, Yanmeng Wang, Chenghua Lin, Wenge Rong
Comments: accepted to the ACL2025 Findings
Subjects: Computation and Language (cs.CL)

In-Context Learning (ICL) empowers Large Language Models (LLMs) for rapid task adaptation without Fine-Tuning (FT), but its reliance on demonstration selection remains a critical challenge. While many-shot ICL shows promising performance through scaled demonstrations, the selection method for many-shot demonstrations remains limited to random selection in existing work. Since the conventional instance-level retrieval is not suitable for many-shot scenarios, we hypothesize that the data requirements for in-context learning and fine-tuning are analogous. To this end, we introduce a novel gradient matching approach that selects demonstrations by aligning fine-tuning gradients between the entire training set of the target task and the selected examples, so as to approach the learning effect on the entire training set within the selected examples. Through gradient matching on relatively small models, e.g., Qwen2.5-3B or Llama3-8B, our method consistently outperforms random selection on larger LLMs from 4-shot to 128-shot scenarios across 9 diverse datasets. For instance, it surpasses random selection by 4% on Qwen2.5-72B and Llama3-70B, and by around 2% on 5 closed-source LLMs. This work unlocks more reliable and effective many-shot ICL, paving the way for its broader application.

[23] arXiv:2506.04583 [pdf, html, other]
Title: SUCEA: Reasoning-Intensive Retrieval for Adversarial Fact-checking through Claim Decomposition and Editing
Hongjun Liu, Yilun Zhao, Arman Cohan, Chen Zhao
Comments: 16 pages, 10 figures, 7 tables
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Automatic fact-checking has recently received more attention as a means of combating misinformation. Despite significant advancements, fact-checking systems based on retrieval-augmented language models still struggle to tackle adversarial claims, which are intentionally designed by humans to challenge fact-checking systems. To address these challenges, we propose a training-free method designed to rephrase the original claim, making it easier to locate supporting evidence. Our modular framework, SUCEA, decomposes the task into three steps: 1) Claim Segmentation and Decontextualization that segments adversarial claims into independent sub-claims; 2) Iterative Evidence Retrieval and Claim Editing that iteratively retrieves evidence and edits the subclaim based on the retrieved evidence; 3) Evidence Aggregation and Label Prediction that aggregates all retrieved evidence and predicts the entailment label. Experiments on two challenging fact-checking datasets demonstrate that our framework significantly improves on both retrieval and entailment label accuracy, outperforming four strong claim-decomposition-based baselines.

[24] arXiv:2506.04585 [pdf, html, other]
Title: MuSciClaims: Multimodal Scientific Claim Verification
Yash Kumar Lal, Manikanta Bandham, Mohammad Saqib Hasan, Apoorva Kashi, Mahnaz Koupaee, Niranjan Balasubramanian
Subjects: Computation and Language (cs.CL)

Assessing scientific claims requires identifying, extracting, and reasoning with multimodal data expressed in information-rich figures in scientific literature. Despite the large body of work in scientific QA, figure captioning, and other multimodal reasoning tasks over chart-based data, there are no readily usable multimodal benchmarks that directly test claim verification abilities. To remedy this gap, we introduce a new benchmark MuSciClaims accompanied by diagnostics tasks. We automatically extract supported claims from scientific articles, which we manually perturb to produce contradicted claims. The perturbations are designed to test for a specific set of claim verification capabilities. We also introduce a suite of diagnostic tasks that help understand model failures. Our results show most vision-language models are poor (~0.3-0.5 F1), with even the best model only achieving 0.77 F1. They are also biased towards judging claims as supported, likely misunderstanding nuanced perturbations within the claims. Our diagnostics show models are bad at localizing correct evidence within figures, struggle with aggregating information across modalities, and often fail to understand basic components of the figure.

[25] arXiv:2506.04586 [pdf, html, other]
Title: LESS: Large Language Model Enhanced Semi-Supervised Learning for Speech Foundational Models
Wen Ding, Fan Qian
Subjects: Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

We introduce LESS (Large Language Model Enhanced Semi-supervised Learning), a versatile framework that leverages Large Language Models (LLMs) to correct pseudo labels generated from in-the-wild data. Within the LESS framework, pseudo-labeled text from Automatic Speech Recognition (ASR) or Automatic Speech Translation (AST) of the unsupervised data is refined by an LLM, and augmented by a data filtering strategy to optimize LLM knowledge transfer efficiency. Experiments on both Mandarin ASR and Spanish-to-English AST tasks show that LESS achieves a notable absolute WER reduction of 3.77% on the Wenet Speech test set, as well as BLEU scores of 34.0 and 64.7 on Callhome and Fisher test sets respectively. These results validate the adaptability of LESS across different languages, tasks, and domains. Ablation studies conducted with various LLMs and prompt configurations provide novel insights into leveraging LLM-derived knowledge for speech processing applications.

[26] arXiv:2506.04592 [pdf, html, other]
Title: Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chengwu Liu, Ye Yuan, Yichun Yin, Yan Xu, Xin Xu, Zaoyu Chen, Yasheng Wang, Lifeng Shang, Qun Liu, Ming Zhang
Comments: Accepted in ACL 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework $Safe$. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework $Safe$ across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose $FormalStep$ as a benchmark for step correctness theorem proving with $30,809$ formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.

[27] arXiv:2506.04603 [pdf, html, other]
Title: A MISMATCHED Benchmark for Scientific Natural Language Inference
Firoz Shaik, Mobashir Sadat, Nikita Gautam, Doina Caragea, Cornelia Caragea
Comments: Accepted to Findings of ACL 2025
Subjects: Computation and Language (cs.CL)

Scientific Natural Language Inference (NLI) is the task of predicting the semantic relation between a pair of sentences extracted from research articles. Existing datasets for this task are derived from various computer science (CS) domains, whereas non-CS domains are completely ignored. In this paper, we introduce a novel evaluation benchmark for scientific NLI, called MISMATCHED. The new MISMATCHED benchmark covers three non-CS domains-PSYCHOLOGY, ENGINEERING, and PUBLIC HEALTH, and contains 2,700 human annotated sentence pairs. We establish strong baselines on MISMATCHED using both Pre-trained Small Language Models (SLMs) and Large Language Models (LLMs). Our best performing baseline shows a Macro F1 of only 78.17% illustrating the substantial headroom for future improvements. In addition to introducing the MISMATCHED benchmark, we show that incorporating sentence pairs having an implicit scientific NLI relation between them in model training improves their performance on scientific NLI. We make our dataset and code publicly available on GitHub.

[28] arXiv:2506.04611 [pdf, other]
Title: Revisiting Test-Time Scaling: A Survey and a Diversity-Aware Method for Efficient Reasoning
Ho-Lam Chung, Teng-Yun Hsiao, Hsiao-Ying Huang, Chunerh Cho, Jian-Ren Lin, Zhang Ziwei, Yun-Nung Chen
Comments: emnlp 2025 submission
Subjects: Computation and Language (cs.CL)

Test-Time Scaling (TTS) improves the reasoning performance of Large Language Models (LLMs) by allocating additional compute during inference. We conduct a structured survey of TTS methods and categorize them into sampling-based, search-based, and trajectory optimization strategies. We observe that reasoning-optimized models often produce less diverse outputs, which limits TTS effectiveness. To address this, we propose ADAPT (A Diversity Aware Prefix fine-Tuning), a lightweight method that applies prefix tuning with a diversity-focused data strategy. Experiments on mathematical reasoning tasks show that ADAPT reaches 80% accuracy using eight times less compute than strong baselines. Our findings highlight the essential role of generative diversity in maximizing TTS effectiveness.

[29] arXiv:2506.04616 [pdf, other]
Title: Subjective Perspectives within Learned Representations Predict High-Impact Innovation
Likun Cao, Rui Pan, James Evans
Comments: 107 pages, 20 figures
Subjects: Computation and Language (cs.CL); Applications (stat.AP); Machine Learning (stat.ML)

Existing studies of innovation emphasize the power of social structures to shape innovation capacity. Emerging machine learning approaches, however, enable us to model innovators' personal perspectives and interpersonal innovation opportunities as a function of their prior trajectories of experience. We theorize then quantify subjective perspectives and innovation opportunities based on innovator positions within the geometric space of concepts inscribed by dynamic language representations. Using data on millions of scientists, inventors, writers, entrepreneurs, and Wikipedia contributors across the creative domains of science, technology, film, entrepreneurship, and Wikipedia, here we show that measured subjective perspectives anticipate what ideas individuals and groups creatively attend to and successfully combine in future. When perspective and background diversity are decomposed as the angular difference between collaborators' perspectives on their creation and between their experiences, the former consistently anticipates creative achievement while the latter portends its opposite, across all cases and time periods examined. We analyze a natural experiment and simulate creative collaborations between AI (large language model) agents designed with various perspective and background diversity, which are consistent with our observational findings. We explore mechanisms underlying these findings and identify how successful collaborators leverage common language to weave together diverse experience obtained through trajectories of prior work that converge to provoke one another and innovate. We explore the importance of these findings for team assembly and research policy.

[30] arXiv:2506.04624 [pdf, html, other]
Title: Static Word Embeddings for Sentence Semantic Representation
Takashi Wada, Yuki Hirakawa, Ryotaro Shimizu, Takahiro Kawashima, Yuki Saito
Comments: 15 pages
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even rivals a basic Sentence Transformer model (SimCSE) on some data sets. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are irrelevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.

[31] arXiv:2506.04625 [pdf, html, other]
Title: Advancing Tool-Augmented Large Language Models via Meta-Verification and Reflection Learning
Zhiyuan Ma, Jiayu Liu, Xianzhen Luo, Zhenya Huang, Qingfu Zhu, Wanxiang Che
Comments: Accepted at the Research Track of KDD 2025
Subjects: Computation and Language (cs.CL)

Empowering large language models (LLMs) with effective tool utilization capabilities is crucial for enabling AI agents to solve complex problems. However, current models face two major limitations: (1) unreliable tool planning and invocation due to low-quality instruction datasets (e.g., widespread hallucinated API calls), and (2) weak tool reflection abilities (over 90% of errors cannot be corrected) resulting from static imitation learning. To address these critical limitations, we propose Tool-MVR, a novel Tool-Augmented LLM that achieves comprehensive System 2 reasoning through two key innovations. Specifically, we first introduce Multi-Agent Meta-Verification (MAMV), a systematic pipeline that rigorously validates APIs, queries, and reasoning trajectories to construct ToolBench-V, a new high-quality instruction dataset that addresses the limitation of unreliable tool planning and invocation. Second, we propose Exploration-based Reflection Learning (EXPLORE), which enhances tool reflection capabilities by leveraging tool feedback through a dynamic "Error -> Reflection -> Correction" learning paradigm, resulting in our reflection dataset ToolBench-R and addressing the critical weakness in tool reflection. Finally, we obtain Tool-MVR by finetuning open-source LLMs (e.g., Qwen-7B) on both ToolBench-V and ToolBench-R. Our experiments demonstrate that Tool-MVR achieves state-of-the-art performance on StableToolBench, surpassing both ToolLLM (by 23.9%) and GPT-4 (by 15.3%) while reducing API calls by 31.4%, with strong generalization capabilities across unseen tools and scenarios. Additionally, on our proposed RefineToolBench, the first benchmark specifically designed to evaluate tool reflection capabilities, Tool-MVR achieves a 58.9% error correction rate, significantly outperforming ToolLLM's 9.1%.

[32] arXiv:2506.04635 [pdf, html, other]
Title: ViCocktail: Automated Multi-Modal Data Collection for Vietnamese Audio-Visual Speech Recognition
Thai-Binh Nguyen, Thi Van Nguyen, Quoc Truong Do, Chi Mai Luong
Comments: Accepted at Interspeech 2025
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Audio-Visual Speech Recognition (AVSR) has gained significant attention recently due to its robustness against noise, which often challenges conventional speech recognition systems that rely solely on audio features. Despite this advantage, AVSR models remain limited by the scarcity of extensive datasets, especially for most languages beyond English. Automated data collection offers a promising solution. This work presents a practical approach to generate AVSR datasets from raw video, refining existing techniques for improved efficiency and accessibility. We demonstrate its broad applicability by developing a baseline AVSR model for Vietnamese. Experiments show the automatically collected dataset enables a strong baseline, achieving competitive performance with robust ASR in clean conditions and significantly outperforming them in noisy environments like cocktail parties. This efficient method provides a pathway to expand AVSR to more languages, particularly under-resourced ones.

[33] arXiv:2506.04642 [pdf, html, other]
Title: TaDA: Training-free recipe for Decoding with Adaptive KV Cache Compression and Mean-centering
Vinay Joshi, Pratik Prabhanjan Brahma, Zicheng Liu, Emad Barsoum
Comments: ACL-2025 industry-track accepted
Subjects: Computation and Language (cs.CL)

The key-value (KV) cache in transformer models is a critical component for efficient decoding or inference, yet its memory demands scale poorly with sequence length, posing a major challenge for scalable deployment of large language models. Among several approaches to KV cache compression, quantization of key and value activations has been widely explored. Most KV cache quantization methods still need to manage sparse and noncontiguous outliers separately. To address this, we introduce TaDA, a training-free recipe for KV cache compression with quantization precision that adapts to error sensitivity across layers and a mean centering to eliminate separate outlier handling. Our approach yields substantial accuracy improvements for multiple models supporting various context lengths. Moreover, our approach does not need to separately manage outlier elements -- a persistent hurdle in most traditional quantization methods. Experiments on standard benchmarks demonstrate that our technique reduces KV cache memory footprint to 27% of the original 16-bit baseline while achieving comparable accuracy. Our method paves the way for scalable and high-performance reasoning in language models by potentially enabling inference for longer context length models, reasoning models, and longer chain of thoughts.

[34] arXiv:2506.04649 [pdf, html, other]
Title: Flex-TravelPlanner: A Benchmark for Flexible Planning with Language Agents
Juhyun Oh, Eunsu Kim, Alice Oh
Subjects: Computation and Language (cs.CL)

Real-world planning problems require constant adaptation to changing requirements and balancing of competing constraints. However, current benchmarks for evaluating LLMs' planning capabilities primarily focus on static, single-turn scenarios. We introduce Flex-TravelPlanner, a benchmark that evaluates language models' ability to reason flexibly in dynamic planning scenarios. Building on the TravelPlanner dataset~\citep{xie2024travelplanner}, we introduce two novel evaluation settings: (1) sequential constraint introduction across multiple turns, and (2) scenarios with explicitly prioritized competing constraints. Our analysis of GPT-4o and Llama 3.1 70B reveals several key findings: models' performance on single-turn tasks poorly predicts their ability to adapt plans across multiple turns; constraint introduction order significantly affects performance; and models struggle with constraint prioritization, often incorrectly favoring newly introduced lower priority preferences over existing higher-priority constraints. These findings highlight the importance of evaluating LLMs in more realistic, dynamic planning scenarios and suggest specific directions for improving model performance on complex planning tasks. The code and dataset for our framework are publicly available at this https URL.

[35] arXiv:2506.04679 [pdf, html, other]
Title: Normative Conflicts and Shallow AI Alignment
Raphaël Millière
Comments: Published in Philosophical Studies
Journal-ref: Milliere, R. (2025). Normative conflicts and shallow AI alignment. Philosophical Studies, 1-44
Subjects: Computation and Language (cs.CL)

The progress of AI systems such as large language models (LLMs) raises increasingly pressing concerns about their safe deployment. This paper examines the value alignment problem for LLMs, arguing that current alignment strategies are fundamentally inadequate to prevent misuse. Despite ongoing efforts to instill norms such as helpfulness, honesty, and harmlessness in LLMs through fine-tuning based on human preferences, they remain vulnerable to adversarial attacks that exploit conflicts between these norms. I argue that this vulnerability reflects a fundamental limitation of existing alignment methods: they reinforce shallow behavioral dispositions rather than endowing LLMs with a genuine capacity for normative deliberation. Drawing from on research in moral psychology, I show how humans' ability to engage in deliberative reasoning enhances their resilience against similar adversarial tactics. LLMs, by contrast, lack a robust capacity to detect and rationally resolve normative conflicts, leaving them susceptible to manipulation; even recent advances in reasoning-focused LLMs have not addressed this vulnerability. This ``shallow alignment'' problem carries significant implications for AI safety and regulation, suggesting that current approaches are insufficient for mitigating potential harms posed by increasingly capable AI systems.

[36] arXiv:2506.04688 [pdf, other]
Title: MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models
Gio Paik, Geewook Kim, Jinbae Im
Comments: ACL Findings 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)

This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at this https URL.

[37] arXiv:2506.04689 [pdf, html, other]
Title: Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Thao Nguyen, Yang Li, Olga Golovneva, Luke Zettlemoyer, Sewoong Oh, Ludwig Schmidt, Xian Li
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.

[38] arXiv:2506.04693 [pdf, html, other]
Title: Cracking the Code: Enhancing Implicit Hate Speech Detection through Coding Classification
Lu Wei, Liangzhi Li, Tong Xiang, Xiao Liu, Noa Garcia
Comments: Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025), 112-126
Subjects: Computation and Language (cs.CL)

The internet has become a hotspot for hate speech (HS), threatening societal harmony and individual well-being. While automatic detection methods perform well in identifying explicit hate speech (ex-HS), they struggle with more subtle forms, such as implicit hate speech (im-HS). We tackle this problem by introducing a new taxonomy for im-HS detection, defining six encoding strategies named codetypes. We present two methods for integrating codetypes into im-HS detection: 1) prompting large language models (LLMs) directly to classify sentences based on generated responses, and 2) using LLMs as encoders with codetypes embedded during the encoding process. Experiments show that the use of codetypes improves im-HS detection in both Chinese and English datasets, validating the effectiveness of our approach across different languages.

[39] arXiv:2506.04708 [pdf, html, other]
Title: Accelerated Test-Time Scaling with Model-Free Speculative Sampling
Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi, Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, Sravan Babu Bodapati
Subjects: Computation and Language (cs.CL)

Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that leverages the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis reveals that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND outperforms state-of-the-art speculative decoding methods by 14-28% in throughput and shows strong performance even in single-trajectory scenarios, reducing inference latency by 48-58%. As a model-free approach, STAND can be applied to any existing language model without additional training, being a powerful plug-and-play solution for accelerating language model reasoning.

[40] arXiv:2506.04714 [pdf, html, other]
Title: IIITH-BUT system for IWSLT 2025 low-resource Bhojpuri to Hindi speech translation
Bhavana Akkiraju, Aishwarya Pothula, Santosh Kesiraju, Anil Kumar Vuppala
Comments: Paper is accepted to IWSLT2025
Subjects: Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

This paper presents the submission of IIITH-BUT to the IWSLT 2025 shared task on speech translation for the low-resource Bhojpuri-Hindi language pair. We explored the impact of hyperparameter optimisation and data augmentation techniques on the performance of the SeamlessM4T model fine-tuned for this specific task. We systematically investigated a range of hyperparameters including learning rate schedules, number of update steps, warm-up steps, label smoothing, and batch sizes; and report their effect on translation quality. To address data scarcity, we applied speed perturbation and SpecAugment and studied their effect on translation quality. We also examined the use of cross-lingual signal through joint training with Marathi and Bhojpuri speech data. Our experiments reveal that careful selection of hyperparameters and the application of simple yet effective augmentation techniques significantly improve performance in low-resource settings. We also analysed the translation hypotheses to understand various kinds of errors that impacted the translation quality in terms of BLEU.

[41] arXiv:2506.04721 [pdf, html, other]
Title: SPARTA ALIGNMENT: Collectively Aligning Multiple Language Models through Combat
Yuru Jiang, Wenxuan Ding, Shangbin Feng, Greg Durrett, Yulia Tsvetkov
Subjects: Computation and Language (cs.CL)

We propose SPARTA ALIGNMENT, an algorithm to collectively align multiple LLMs through competition and combat. To complement a single model's lack of diversity in generation and biases in evaluation, multiple LLMs form a "sparta tribe" to compete against each other in fulfilling instructions while serving as judges for the competition of others. For each iteration, one instruction and two models are selected for a duel, the other models evaluate the two responses, and their evaluation scores are aggregated through a adapted elo-ranking based reputation system, where winners/losers of combat gain/lose weight in evaluating others. The peer-evaluated combat results then become preference pairs where the winning response is preferred over the losing one, and all models learn from these preferences at the end of each iteration. SPARTA ALIGNMENT enables the self-evolution of multiple LLMs in an iterative and collective competition process. Extensive experiments demonstrate that SPARTA ALIGNMENT outperforms initial models and 4 self-alignment baselines across 10 out of 12 tasks and datasets with 7.0% average improvement. Further analysis reveals that SPARTA ALIGNMENT generalizes more effectively to unseen tasks and leverages the expertise diversity of participating models to produce more logical, direct and informative outputs.

[42] arXiv:2506.04739 [pdf, html, other]
Title: Lifelong Evolution: Collaborative Learning between Large and Small Language Models for Continuous Emergent Fake News Detection
Ziyi Zhou, Xiaoming Zhang, Litian Zhang, Yibo Zhang, Zhenyu Guan, Chaozhuo Li, Philip S. Yu
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

The widespread dissemination of fake news on social media has significantly impacted society, resulting in serious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from extensive supervised training requirements and difficulties adapting to evolving news environments due to data scarcity and distribution shifts. Large language models (LLMs), despite robust zero-shot capabilities, fall short in accurately detecting fake news owing to outdated knowledge and the absence of suitable demonstrations. In this paper, we propose a novel Continuous Collaborative Emergent Fake News Detection (C$^2$EFND) framework to address these challenges. The C$^2$EFND framework strategically leverages both LLMs' generalization power and SLMs' classification expertise via a multi-round collaborative learning framework. We further introduce a lifelong knowledge editing module based on a Mixture-of-Experts architecture to incrementally update LLMs and a replay-based continue learning method to ensure SLMs retain prior knowledge without retraining entirely. Extensive experiments on Pheme and Twitter16 datasets demonstrate that C$^2$EFND significantly outperforms existed methods, effectively improving detection accuracy and adaptability in continuous emergent fake news scenarios.

[43] arXiv:2506.04772 [pdf, html, other]
Title: Identifying Reliable Evaluation Metrics for Scientific Text Revision
Léane Jourdan, Florian Boudin, Richard Dufour, Nicolas Hernandez
Comments: Accepted to ACL 2025 main
Subjects: Computation and Language (cs.CL)

Evaluating text revision in scientific writing remains a challenge, as traditional metrics such as ROUGE and BERTScore primarily focus on similarity rather than capturing meaningful improvements. In this work, we analyse and identify the limitations of these metrics and explore alternative evaluation methods that better align with human judgments. We first conduct a manual annotation study to assess the quality of different revisions. Then, we investigate reference-free evaluation metrics from related NLP domains. Additionally, we examine LLM-as-a-judge approaches, analysing their ability to assess revisions with and without a gold reference. Our results show that LLMs effectively assess instruction-following but struggle with correctness, while domain-specific metrics provide complementary insights. We find that a hybrid approach combining LLM-as-a-judge evaluation and task-specific metrics offers the most reliable assessment of revision quality.

[44] arXiv:2506.04774 [pdf, html, other]
Title: Fine-Grained Interpretation of Political Opinions in Large Language Models
Jingyu Hu, Mengyue Yang, Mengnan Du, Weiru Liu
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Studies of LLMs' political opinions mainly rely on evaluations of their open-ended responses. Recent work indicates that there is a misalignment between LLMs' responses and their internal intentions. This motivates us to probe LLMs' internal mechanisms and help uncover their internal political states. Additionally, we found that the analysis of LLMs' political opinions often relies on single-axis concepts, which can lead to concept confounds. In this work, we extend the single-axis to multi-dimensions and apply interpretable representation engineering techniques for more transparent LLM political concept learning. Specifically, we designed a four-dimensional political learning framework and constructed a corresponding dataset for fine-grained political concept vector learning. These vectors can be used to detect and intervene in LLM internals. Experiments are conducted on eight open-source LLMs with three representation engineering techniques. Results show these vectors can disentangle political concept confounds. Detection tasks validate the semantic meaning of the vectors and show good generalization and robustness in OOD settings. Intervention Experiments show these vectors can intervene in LLMs to generate responses with different political leanings.

[45] arXiv:2506.04779 [pdf, other]
Title: MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark
Dingdong Wang, Jincenzi Wu, Junan Li, Dongchao Yang, Xueyuan Chen, Tianhua Zhang, Helen Meng
Comments: MMSU benchmark is available at this https URL. Evaluation Code is available at this https URL
Subjects: Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at this https URL. Evaluation Code is available at this https URL.

[46] arXiv:2506.04788 [pdf, html, other]
Title: Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques
Jisu An, Junseok Lee, Jeoungeun Lee, Yongseok Son
Comments: 18 pages, 3 figures, 3 tables
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.

[47] arXiv:2506.04810 [pdf, html, other]
Title: Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study
Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue Huang, Haomin Zhuang, Zhenwen Liang, Kehan Guo, Taicheng Guo, Xiangqi Wang, Xiangliang Zhang
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Logic in Computer Science (cs.LO)

Logical reasoning is a core capability for many applications of large language models (LLMs), yet existing benchmarks often rely solely on final-answer accuracy, failing to capture the quality and structure of the reasoning process. We propose FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall benchmark accuracy, stepwise soundness, and representation-level alignment. In addition, to better understand how reasoning capabilities emerge, we conduct a comprehensive study on the effects of supervision format during fine-tuning. We construct four supervision styles (one natural language and three symbolic variants) and train LLMs under each. Our findings reveal that natural language supervision yields strong generalization even on out-of-distribution and long-context tasks, while symbolic reasoning styles promote more structurally sound and atomic inference chains. Further, our representation-level probing shows that fine-tuning primarily improves reasoning behaviors through step-by-step generation, rather than enhancing shortcut prediction or internalized correctness. Together, our framework and analysis provide a more rigorous and interpretable lens for evaluating and improving logical reasoning in LLMs.

[48] arXiv:2506.04811 [pdf, other]
Title: Design of intelligent proofreading system for English translation based on CNN and BERT
Feijun Liu, Huifeng Wang, Kun Wang, Yizhen Wang
Subjects: Computation and Language (cs.CL)

Since automatic translations can contain errors that require substantial human post-editing, machine translation proofreading is essential for improving quality. This paper proposes a novel hybrid approach for robust proofreading that combines convolutional neural networks (CNN) with Bidirectional Encoder Representations from Transformers (BERT). In order to extract semantic information from phrases and expressions, CNN uses a variety of convolution kernel filters to capture local n-gram patterns. In the meanwhile, BERT creates context-rich representations of whole sequences by utilizing stacked bidirectional transformer encoders. Using BERT's attention processes, the integrated error detection component relates tokens to spot translation irregularities including word order problems and omissions. The correction module then uses parallel English-German alignment and GRU decoder models in conjunction with translation memory to propose logical modifications that maintain original meaning. A unified end-to-end training process optimized for post-editing performance is applied to the whole pipeline. The multi-domain collection of WMT and the conversational dialogues of Open-Subtitles are two of the English-German parallel corpora used to train the model. Multiple loss functions supervise detection and correction capabilities. Experiments attain a 90% accuracy, 89.37% F1, and 16.24% MSE, exceeding recent proofreading techniques by over 10% overall. Comparative benchmarking demonstrates state-of-the-art performance in identifying and coherently rectifying mistranslations and omissions.

[49] arXiv:2506.04822 [pdf, html, other]
Title: Evaluating Vision-Language and Large Language Models for Automated Student Assessment in Indonesian Classrooms
Nurul Aisyah, Muhammad Dehan Al Kautsar, Arif Hidayat, Raqib Chowdhury, Fajri Koto
Subjects: Computation and Language (cs.CL)

Although vision-language and large language models (VLM and LLM) offer promising opportunities for AI-driven educational assessment, their effectiveness in real-world classroom settings, particularly in underrepresented educational contexts, remains underexplored. In this study, we evaluated the performance of a state-of-the-art VLM and several LLMs on 646 handwritten exam responses from grade 4 students in six Indonesian schools, covering two subjects: Mathematics and English. These sheets contain more than 14K student answers that span multiple choice, short answer, and essay questions. Assessment tasks include grading these responses and generating personalized feedback. Our findings show that the VLM often struggles to accurately recognize student handwriting, leading to error propagation in downstream LLM grading. Nevertheless, LLM-generated feedback retains some utility, even when derived from imperfect input, although limitations in personalization and contextual relevance persist.

[50] arXiv:2506.04824 [pdf, html, other]
Title: A Reasoning-Based Approach to Cryptic Crossword Clue Solving
Martin Andrews, Sam Witteveen
Comments: 9 page paper plus Appendices. Accepted to ICML 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Cryptic crossword clues are challenging language tasks for which new test sets are released daily by major newspapers on a global basis. Each cryptic clue contains both the definition of the answer to be placed in the crossword grid (in common with regular crosswords), and 'wordplay' that proves that the answer is correct (i.e. a human solver can be confident that an answer is correct without needing crossing words as confirmation). This work describes an LLM-based reasoning system built from open-licensed components that solves cryptic clues by (i) hypothesising answers; (ii) proposing wordplay explanations; and (iii) using a verifier system that operates on codified reasoning steps. Overall, this system establishes a new state-of-the-art performance on the challenging Cryptonite dataset of clues from The Times and The Telegraph newspapers in the UK. Because each proved solution is expressed in Python, interpretable wordplay reasoning for proven answers is available for inspection.

[51] arXiv:2506.04832 [pdf, other]
Title: Joint Evaluation of Answer and Reasoning Consistency for Hallucination Detection in Large Reasoning Models
Changyue Wang, Weihang Su, Qingyao Ai, Yiqun Liu
Subjects: Computation and Language (cs.CL)

Large Reasoning Models (LRMs) extend large language models with explicit, multi-step reasoning traces to enhance transparency and performance on complex tasks. However, these reasoning traces can be redundant or logically inconsistent, making them a new source of hallucination that is difficult to detect. Existing hallucination detection methods focus primarily on answer-level uncertainty and often fail to detect hallucinations or logical inconsistencies arising from the model's reasoning trace. This oversight is particularly problematic for LRMs, where the explicit thinking trace is not only an important support to the model's decision-making process but also a key source of potential hallucination. To this end, we propose RACE (Reasoning and Answer Consistency Evaluation), a novel framework specifically tailored for hallucination detection in LRMs. RACE operates by extracting essential reasoning steps and computing four diagnostic signals: inter-sample consistency of reasoning traces, entropy-based answer uncertainty, semantic alignment between reasoning and answers, and internal coherence of reasoning. This joint analysis enables fine-grained hallucination detection even when the final answer appears correct. Experiments across datasets and different LLMs demonstrate that RACE outperforms existing hallucination detection baselines, offering a robust and generalizable solution for evaluating LRMs. Our code is available at: this https URL.

[52] arXiv:2506.04848 [pdf, html, other]
Title: MockConf: A Student Interpretation Dataset: Analysis, Word- and Span-level Alignment and Baselines
Dávid Javorský, Ondřej Bojar, François Yvon
Comments: Accepted to ACL 2025 Main Conference
Subjects: Computation and Language (cs.CL)

In simultaneous interpreting, an interpreter renders a source speech into another language with a very short lag, much sooner than sentences are finished. In order to understand and later reproduce this dynamic and complex task automatically, we need dedicated datasets and tools for analysis, monitoring, and evaluation, such as parallel speech corpora, and tools for their automatic annotation. Existing parallel corpora of translated texts and associated alignment algorithms hardly fill this gap, as they fail to model long-range interactions between speech segments or specific types of divergences (e.g., shortening, simplification, functional generalization) between the original and interpreted speeches. In this work, we introduce MockConf, a student interpreting dataset that was collected from Mock Conferences run as part of the students' curriculum. This dataset contains 7 hours of recordings in 5 European languages, transcribed and aligned at the level of spans and words. We further implement and release InterAlign, a modern web-based annotation tool for parallel word and span annotations on long inputs, suitable for aligning simultaneous interpreting. We propose metrics for the evaluation and a baseline for automatic alignment. Dataset and tools are released to the community.

[53] arXiv:2506.04851 [pdf, html, other]
Title: Multiple-Choice Question Generation Using Large Language Models: Methodology and Educator Insights
Giorgio Biancini, Alessio Ferrato, Carla Limongelli
Comments: Copyright ACM 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct '24), this http URL
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Integrating Artificial Intelligence (AI) in educational settings has brought new learning approaches, transforming the practices of both students and educators. Among the various technologies driving this transformation, Large Language Models (LLMs) have emerged as powerful tools for creating educational materials and question answering, but there are still space for new applications. Educators commonly use Multiple-Choice Questions (MCQs) to assess student knowledge, but manually generating these questions is resource-intensive and requires significant time and cognitive effort. In our opinion, LLMs offer a promising solution to these challenges. This paper presents a novel comparative analysis of three widely known LLMs - Llama 2, Mistral, and GPT-3.5 - to explore their potential for creating informative and challenging MCQs. In our approach, we do not rely on the knowledge of the LLM, but we inject the knowledge into the prompt to contrast the hallucinations, giving the educators control over the test's source text, too. Our experiment involving 21 educators shows that GPT-3.5 generates the most effective MCQs across several known metrics. Additionally, it shows that there is still some reluctance to adopt AI in the educational field. This study sheds light on the potential of LLMs to generate MCQs and improve the educational experience, providing valuable insights for the future.

[54] arXiv:2506.04855 [pdf, html, other]
Title: Prompting LLMs: Length Control for Isometric Machine Translation
Dávid Javorský, Ondřej Bojar, François Yvon
Comments: Accepted to IWSLT 2025
Subjects: Computation and Language (cs.CL)

In this study, we explore the effectiveness of isometric machine translation across multiple language pairs (En$\to$De, En$\to$Fr, and En$\to$Es) under the conditions of the IWSLT Isometric Shared Task 2022. Using eight open-source large language models (LLMs) of varying sizes, we investigate how different prompting strategies, varying numbers of few-shot examples, and demonstration selection influence translation quality and length control. We discover that the phrasing of instructions, when aligned with the properties of the provided demonstrations, plays a crucial role in controlling the output length. Our experiments show that LLMs tend to produce shorter translations only when presented with extreme examples, while isometric demonstrations often lead to the models disregarding length constraints. While few-shot prompting generally enhances translation quality, further improvements are marginal across 5, 10, and 20-shot settings. Finally, considering multiple outputs allows to notably improve overall tradeoff between the length and quality, yielding state-of-the-art performance for some language pairs.

[55] arXiv:2506.04887 [pdf, other]
Title: Evaluating the Effectiveness of Linguistic Knowledge in Pretrained Language Models: A Case Study of Universal Dependencies
Wenxi Li
Subjects: Computation and Language (cs.CL)

Universal Dependencies (UD), while widely regarded as the most successful linguistic framework for cross-lingual syntactic representation, remains underexplored in terms of its effectiveness. This paper addresses this gap by integrating UD into pretrained language models and assesses if UD can improve their performance on a cross-lingual adversarial paraphrase identification task. Experimental results show that incorporation of UD yields significant improvements in accuracy and $F_1$ scores, with average gains of 3.85\% and 6.08\% respectively. These enhancements reduce the performance gap between pretrained models and large language models in some language pairs, and even outperform the latter in some others. Furthermore, the UD-based similarity score between a given language and English is positively correlated to the performance of models in that language. Both findings highlight the validity and potential of UD in out-of-domain tasks.

[56] arXiv:2506.04894 [pdf, html, other]
Title: ICPC-Eval: Probing the Frontiers of LLM Reasoning with Competitive Programming Contests
Shiyi Xu, Yiwen Hu, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen
Subjects: Computation and Language (cs.CL)

With the significant progress of large reasoning models in complex coding and reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are insufficient to evaluate the coding capabilities of large language models (LLMs) in real competition environments. Moreover, current evaluation metrics such as Pass@K fail to capture the reflective abilities of reasoning models. To address these challenges, we propose \textbf{ICPC-Eval}, a top-level competitive coding benchmark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes 118 carefully curated problems from 11 recent ICPC contests held in various regions of the world, offering three key contributions: 1) A challenging realistic ICPC competition scenario, featuring a problem type and difficulty distribution consistent with actual contests. 2) A robust test case generation method and a corresponding local evaluation toolkit, enabling efficient and accurate local evaluation. 3) An effective test-time scaling evaluation metric, Refine@K, which allows iterative repair of solutions based on execution feedback. The results underscore the significant challenge in evaluating complex reasoning abilities: top-tier reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to fully unlock their in-context reasoning potential when compared to non-reasoning counterparts. Furthermore, despite recent advancements in code generation, these models still lag behind top-performing human teams. We release the benchmark at: this https URL

[57] arXiv:2506.04907 [pdf, html, other]
Title: Verbose ListOps (VLO): Beyond Long Context -- Unmasking LLM's Reasoning Blind Spots
Alex Pan, Mary-Anne Williams
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR); Machine Learning (cs.LG)

Large Language Models (LLMs), whilst great at extracting facts from text, struggle with nested narrative reasoning. Existing long context and multi-hop QA benchmarks inadequately test this, lacking realistic distractors or failing to decouple context length from reasoning complexity, masking a fundamental LLM limitation. We introduce Verbose ListOps, a novel benchmark that programmatically transposes ListOps computations into lengthy, coherent stories. This uniquely forces internal computation and state management of nested reasoning problems by withholding intermediate results, and offers fine-grained controls for both narrative size \emph{and} reasoning difficulty. Whilst benchmarks like LongReason (2025) advance approaches for synthetically expanding the context size of multi-hop QA problems, Verbose ListOps pinpoints a specific LLM vulnerability: difficulty in state management for nested sub-reasoning amongst semantically-relevant, distracting narrative. Our experiments show that leading LLMs (e.g., OpenAI o4, Gemini 2.5 Pro) collapse in performance on Verbose ListOps at modest (~10k token) narrative lengths, despite effortlessly solving raw ListOps equations. Addressing this failure is paramount for real-world text interpretation which requires identifying key reasoning points, tracking conceptual intermediate results, and filtering irrelevant information. Verbose ListOps, and its extensible generation framework thus enables targeted reasoning enhancements beyond mere context-window expansion; a critical step to automating the world's knowledge work.

[58] arXiv:2506.04915 [pdf, html, other]
Title: A Practitioner's Guide to Building ASR Models for Low-Resource Languages: A Case Study on Scottish Gaelic
Ondřej Klejch, William Lamb, Peter Bell
Comments: Accepted to Interspeech 2025
Subjects: Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

An effective approach to the development of ASR systems for low-resource languages is to fine-tune an existing multilingual end-to-end model. When the original model has been trained on large quantities of data from many languages, fine-tuning can be effective with limited training data, even when the language in question was not present in the original training data. The fine-tuning approach has been encouraged by the availability of public-domain E2E models and is widely believed to lead to state-of-the-art results. This paper, however, challenges that belief. We show that an approach combining hybrid HMMs with self-supervised models can yield substantially better performance with limited training data. This combination allows better utilisation of all available speech and text data through continued self-supervised pre-training and semi-supervised training. We benchmark our approach on Scottish Gaelic, achieving WER reductions of 32% relative over our best fine-tuned Whisper model.

[59] arXiv:2506.04920 [pdf, html, other]
Title: Simulating LLM-to-LLM Tutoring for Multilingual Math Feedback
Junior Cedric Tonga, KV Aditya Srivatsa, Kaushal Kumar Maurya, Fajri Koto, Ekaterina Kochmar
Comments: Preprint, in submission
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large language models (LLMs) have demonstrated the ability to generate formative feedback and instructional hints in English, making them increasingly relevant for AI-assisted education. However, their ability to provide effective instructional support across different languages, especially for mathematically grounded reasoning tasks, remains largely unexamined. In this work, we present the first large-scale simulation of multilingual tutor-student interactions using LLMs. A stronger model plays the role of the tutor, generating feedback in the form of hints, while a weaker model simulates the student. We explore 352 experimental settings across 11 typologically diverse languages, four state-of-the-art LLMs, and multiple prompting strategies to assess whether language-specific feedback leads to measurable learning gains. Our study examines how student input language, teacher feedback language, model choice, and language resource level jointly influence performance. Results show that multilingual hints can significantly improve learning outcomes, particularly in low-resource languages when feedback is aligned with the student's native language. These findings offer practical insights for developing multilingual, LLM-based educational tools that are both effective and inclusive.

[60] arXiv:2506.04929 [pdf, html, other]
Title: ConECT Dataset: Overcoming Data Scarcity in Context-Aware E-Commerce MT
Mikołaj Pokrywka, Wojciech Kusa, Mieszko Rutkowski, Mikołaj Koszowski
Comments: Accepted at ACL 2025 (The 63rd Annual Meeting of the Association for Computational Linguistics)
Subjects: Computation and Language (cs.CL)

Neural Machine Translation (NMT) has improved translation by using Transformer-based models, but it still struggles with word ambiguity and context. This problem is especially important in domain-specific applications, which often have problems with unclear sentences or poor data quality. Our research explores how adding information to models can improve translations in the context of e-commerce data. To this end we create ConECT -- a new Czech-to-Polish e-commerce product translation dataset coupled with images and product metadata consisting of 11,400 sentence pairs. We then investigate and compare different methods that are applicable to context-aware translation. We test a vision-language model (VLM), finding that visual context aids translation quality. Additionally, we explore the incorporation of contextual information into text-to-text models, such as the product's category path or image descriptions. The results of our study demonstrate that the incorporation of contextual information leads to an improvement in the quality of machine translation. We make the new dataset publicly available.

[61] arXiv:2506.04965 [pdf, html, other]
Title: From Struggle (06-2024) to Mastery (02-2025) LLMs Conquer Advanced Algorithm Exams and Pave the Way for Editorial Generation
Adrian Marius Dumitran, Theodor-Pierre Moroianu, Vasile Paul Alexe
Comments: 15 pages Pre-print Paper accepted to ITS 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

This paper presents a comprehensive evaluation of the performance of state-of-the-art Large Language Models (LLMs) on challenging university-level algorithms exams. By testing multiple models on both a Romanian exam and its high-quality English translation, we analyze LLMs' problem-solving capabilities, consistency, and multilingual performance. Our empirical study reveals that the most recent models not only achieve scores comparable to top-performing students but also demonstrate robust reasoning skills on complex, multi-step algorithmic challenges, even though difficulties remain with graph-based tasks. Building on these findings, we explore the potential of LLMs to support educational environments through the generation of high-quality editorial content, offering instructors a powerful tool to enhance student feedback. The insights and best practices discussed herein pave the way for further integration of generative AI in advanced algorithm education.

[62] arXiv:2506.04981 [pdf, html, other]
Title: Better Semi-supervised Learning for Multi-domain ASR Through Incremental Retraining and Data Filtering
Andres Carofilis, Pradeep Rangappa, Srikanth Madikeri, Shashi Kumar, Sergio Burdisso, Jeena Prakash, Esau Villatoro-Tello, Petr Motlicek, Bidisha Sharma, Kadri Hacioglu, Shankar Venkatesan, Saurabh Vyas, Andreas Stolcke
Comments: Accepted at Interspeech 2025, Netherlands
Subjects: Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Fine-tuning pretrained ASR models for specific domains is challenging when labeled data is scarce. But unlabeled audio and labeled data from related domains are often available. We propose an incremental semi-supervised learning pipeline that first integrates a small in-domain labeled set and an auxiliary dataset from a closely related domain, achieving a relative improvement of 4% over no auxiliary data. Filtering based on multi-model consensus or named entity recognition (NER) is then applied to select and iteratively refine pseudo-labels, showing slower performance saturation compared to random selection. Evaluated on the multi-domain Wow call center and Fisher English corpora, it outperforms single-step fine-tuning. Consensus-based filtering outperforms other methods, providing up to 22.3% relative improvement on Wow and 24.8% on Fisher over single-step fine-tuning with random selection. NER is the second-best filter, providing competitive performance at a lower computational cost.

[63] arXiv:2506.05000 [pdf, html, other]
Title: SCOP: Evaluating the Comprehension Process of Large Language Models from a Cognitive View
Yongjie Xiao, Hongru Liang, Peixin Qin, Yao Zhang, Wenqiang Lei
Comments: arXiv admin note: text overlap with arXiv:2004.14535 by other authors
Subjects: Computation and Language (cs.CL)

Despite the great potential of large language models(LLMs) in machine comprehension, it is still disturbing to fully count on them in real-world scenarios. This is probably because there is no rational explanation for whether the comprehension process of LLMs is aligned with that of experts. In this paper, we propose SCOP to carefully examine how LLMs perform during the comprehension process from a cognitive view. Specifically, it is equipped with a systematical definition of five requisite skills during the comprehension process, a strict framework to construct testing data for these skills, and a detailed analysis of advanced open-sourced and closed-sourced LLMs using the testing data. With SCOP, we find that it is still challenging for LLMs to perform an expert-level comprehension process. Even so, we notice that LLMs share some similarities with experts, e.g., performing better at comprehending local information than global information. Further analysis reveals that LLMs can be somewhat unreliable -- they might reach correct answers through flawed comprehension processes. Based on SCOP, we suggest that one direction for improving LLMs is to focus more on the comprehension process, ensuring all comprehension skills are thoroughly developed during training.

[64] arXiv:2506.05010 [pdf, html, other]
Title: ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development
Zhenran Xu, Xue Yang, Yiyu Wang, Qingli Hu, Zijiao Wu, Longyue Wang, Weihua Luo, Kaifu Zhang, Baotian Hu, Min Zhang
Comments: ACL 2025 Demo. Github: this https URL
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at this https URL.

[65] arXiv:2506.05017 [pdf, html, other]
Title: Controlling Summarization Length Through EOS Token Weighting
Zeno Belligoli, Emmanouil Stergiadis, Eran Fainman, Ilya Gusev
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Controlling the length of generated text can be crucial in various text-generation tasks, including summarization. Existing methods often require complex model alterations, limiting compatibility with pre-trained models. We address these limitations by developing a simple approach for controlling the length of automatic text summaries by increasing the importance of correctly predicting the EOS token in the cross-entropy loss computation. The proposed methodology is agnostic to architecture and decoding algorithms and orthogonal to other inference-time techniques to control the generation length. We tested it with encoder-decoder and modern GPT-style LLMs, and show that this method can control generation length, often without affecting the quality of the summary.

[66] arXiv:2506.05038 [pdf, html, other]
Title: Automatic Robustness Stress Testing of LLMs as Mathematical Problem Solvers
Yutao Hou, Zeguan Xiao, Fei Yu, Yihan Jiang, Xuetao Wei, Hailiang Huang, Yun Chen, Guanhua Chen
Subjects: Computation and Language (cs.CL)

Large language models (LLMs) have achieved distinguished performance on various reasoning-intensive tasks. However, LLMs might still face the challenges of robustness issues and fail unexpectedly in some simple reasoning tasks. Previous works evaluate the LLM robustness with hand-crafted templates or a limited set of perturbation rules, indicating potential data contamination in pre-training or fine-tuning datasets. In this work, inspired by stress testing in software engineering, we propose a novel framework, Automatic Robustness Checker (AR-Checker), to generate mathematical problem variants that maintain the semantic meanings of the original one but might fail the LLMs. The AR-Checker framework generates mathematical problem variants through multi-round parallel streams of LLM-based rewriting and verification. Our framework can generate benchmark variants dynamically for each LLM, thus minimizing the risk of data contamination. Experiments on GSM8K and MATH-500 demonstrate the strong performance of AR-Checker on mathematical tasks. We also evaluate AR-Checker on benchmarks beyond mathematics, including MMLU, MMLU-Pro, and CommonsenseQA, where it also achieves strong performance, further proving the effectiveness of AR-Checker.

[67] arXiv:2506.05057 [pdf, html, other]
Title: TALL -- A Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages
Moshe Ofer, Orel Zamler, Amos Azaria
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) excel in high-resource languages but struggle with low-resource languages due to limited training data. This paper presents TALL (Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages), which integrates an LLM with two bilingual translation models. TALL transforms low-resource inputs into high-resource representations, leveraging the LLM's capabilities while preserving linguistic features through dimension alignment layers and custom transformers. Our experiments on Hebrew demonstrate significant improvements over several baselines, including direct use, naive translation, and fine-tuning approaches. The architecture employs a parameter-efficient strategy, freezing pre-trained components while training only lightweight adapter modules, balancing computational efficiency with performance gains.

[68] arXiv:2506.05062 [pdf, html, other]
Title: Debatable Intelligence: Benchmarking LLM Judges via Debate Speech Evaluation
Noy Sternlicht, Ariel Gera, Roy Bar-Haim, Tom Hope, Noam Slonim
Comments: Code: this https URL
Subjects: Computation and Language (cs.CL)

We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that have previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.

[69] arXiv:2506.05068 [pdf, html, other]
Title: Does It Make Sense to Speak of Introspection in Large Language Models?
Iulia Comşa, Murray Shanahan
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large language models (LLMs) exhibit compelling linguistic behaviour, and sometimes offer self-reports, that is to say statements about their own nature, inner workings, or behaviour. In humans, such reports are often attributed to a faculty of introspection and are typically linked to consciousness. This raises the question of how to interpret self-reports produced by LLMs, given their increasing linguistic fluency and cognitive capabilities. To what extent (if any) can the concept of introspection be meaningfully applied to LLMs? Here, we present and critique two examples of apparent introspective self-report from LLMs. In the first example, an LLM attempts to describe the process behind its own ``creative'' writing, and we argue this is not a valid example of introspection. In the second example, an LLM correctly infers the value of its own temperature parameter, and we argue that this can be legitimately considered a minimal example of introspection, albeit one that is (presumably) not accompanied by conscious experience.

[70] arXiv:2506.05070 [pdf, html, other]
Title: RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation
Tianjiao Li, Mengran Yu, Chenyu Shi, Yanjun Zhao, Xiaojing Liu, Qiang Zhang, Qi Zhang, Xuanjing Huang, Jiayin Wang
Subjects: Computation and Language (cs.CL)

Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines.

[71] arXiv:2506.05073 [pdf, html, other]
Title: Just a Scratch: Enhancing LLM Capabilities for Self-harm Detection through Intent Differentiation and Emoji Interpretation
Soumitra Ghosh, Gopendra Vikram Singh, Shambhavi, Sabarna Choudhury, Asif Ekbal
Comments: To be published in the Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025 Main)
Subjects: Computation and Language (cs.CL)

Self-harm detection on social media is critical for early intervention and mental health support, yet remains challenging due to the subtle, context-dependent nature of such expressions. Identifying self-harm intent aids suicide prevention by enabling timely responses, but current large language models (LLMs) struggle to interpret implicit cues in casual language and emojis. This work enhances LLMs' comprehension of self-harm by distinguishing intent through nuanced language-emoji interplay. We present the Centennial Emoji Sensitivity Matrix (CESM-100), a curated set of 100 emojis with contextual self-harm interpretations and the Self-Harm Identification aNd intent Extraction with Supportive emoji sensitivity (SHINES) dataset, offering detailed annotations for self-harm labels, casual mentions (CMs), and serious intents (SIs). Our unified framework: a) enriches inputs using CESM-100; b) fine-tunes LLMs for multi-task learning: self-harm detection (primary) and CM/SI span detection (auxiliary); c) generates explainable rationales for self-harm predictions. We evaluate the framework on three state-of-the-art LLMs-Llama 3, Mental-Alpaca, and MentalLlama, across zero-shot, few-shot, and fine-tuned scenarios. By coupling intent differentiation with contextual cues, our approach commendably enhances LLM performance in both detection and explanation tasks, effectively addressing the inherent ambiguity in self-harm signals. The SHINES dataset, CESM-100 and codebase are publicly available at: this https URL .

[72] arXiv:2506.05080 [pdf, other]
Title: Parking, Perception, and Retail: Street-Level Determinants of Community Vitality in Harbin
HaoTian Lan
Comments: 22 pages,5 figures
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

The commercial vitality of community-scale streets in Chinese cities is shaped by complex interactions between vehicular accessibility, environmental quality, and pedestrian perception. This study proposes an interpretable, image-based framework to examine how street-level features -- including parked vehicle density, greenery, cleanliness, and street width -- impact retail performance and user satisfaction in Harbin, China. Leveraging street view imagery and a multimodal large language model (VisualGLM-6B), we construct a Community Commercial Vitality Index (CCVI) from Meituan and Dianping data and analyze its relationship with spatial attributes extracted via GPT-4-based perception modeling. Our findings reveal that while moderate vehicle presence may enhance commercial access, excessive on-street parking -- especially in narrow streets -- erodes walkability and reduces both satisfaction and shop-level pricing. In contrast, streets with higher perceived greenery and cleanliness show significantly greater satisfaction scores but only weak associations with pricing. Street width moderates the effects of vehicle presence, underscoring the importance of spatial configuration. These results demonstrate the value of integrating AI-assisted perception with urban morphological analysis to capture non-linear and context-sensitive drivers of commercial success. This study advances both theoretical and methodological frontiers by highlighting the conditional role of vehicle activity in neighborhood commerce and demonstrating the feasibility of multimodal AI for perceptual urban diagnostics. The implications extend to urban design, parking management, and scalable planning tools for community revitalization.

[73] arXiv:2506.05107 [pdf, other]
Title: CL-ISR: A Contrastive Learning and Implicit Stance Reasoning Framework for Misleading Text Detection on Social Media
Tianyi Huang, Zikun Cui, Cuiqianhe Du, Chia-En Chiang
Comments: 6 pages, 2 figures
Subjects: Computation and Language (cs.CL)

Misleading text detection on social media platforms is a critical research area, as these texts can lead to public misunderstanding, social panic and even economic losses. This paper proposes a novel framework - CL-ISR (Contrastive Learning and Implicit Stance Reasoning), which combines contrastive learning and implicit stance reasoning, to improve the detection accuracy of misleading texts on social media. First, we use the contrastive learning algorithm to improve the model's learning ability of semantic differences between truthful and misleading texts. Contrastive learning could help the model to better capture the distinguishing features between different categories by constructing positive and negative sample pairs. This approach enables the model to capture distinguishing features more effectively, particularly in linguistically complicated situations. Second, we introduce the implicit stance reasoning module, to explore the potential stance tendencies in the text and their relationships with related topics. This method is effective for identifying content that misleads through stance shifting or emotional manipulation, because it can capture the implicit information behind the text. Finally, we integrate these two algorithms together to form a new framework, CL-ISR, which leverages the discriminative power of contrastive learning and the interpretive depth of stance reasoning to significantly improve detection effect.

[74] arXiv:2506.05121 [pdf, html, other]
Title: The NTNU System at the S&I Challenge 2025 SLA Open Track
Hong-Yun Lin, Tien-Hong Lo, Yu-Hsuan Fang, Jhen-Ke Lin, Chung-Chun Wang, Hao-Chien Lu, Berlin Chen
Comments: submitted to the ISCA SLaTE-2025 Workshop
Subjects: Computation and Language (cs.CL); Sound (cs.SD); Audio and Speech Processing (eess.AS)

A recent line of research on spoken language assessment (SLA) employs neural models such as BERT and wav2vec 2.0 (W2V) to evaluate speaking proficiency across linguistic and acoustic modalities. Although both models effectively capture features relevant to oral competence, each exhibits modality-specific limitations. BERT-based methods rely on ASR transcripts, which often fail to capture prosodic and phonetic cues for SLA. In contrast, W2V-based methods excel at modeling acoustic features but lack semantic interpretability. To overcome these limitations, we propose a system that integrates W2V with Phi-4 multimodal large language model (MLLM) through a score fusion strategy. The proposed system achieves a root mean square error (RMSE) of 0.375 on the official test set of the Speak & Improve Challenge 2025, securing second place in the competition. For comparison, the RMSEs of the top-ranked, third-ranked, and official baseline systems are 0.364, 0.384, and 0.444, respectively.

[75] arXiv:2506.05128 [pdf, html, other]
Title: DiCoRe: Enhancing Zero-shot Event Detection via Divergent-Convergent LLM Reasoning
Tanmay Parekh, Kartik Mehta, Ninareh Mehrabi, Kai-Wei Chang, Nanyun Peng
Comments: Submitted at ACL ARR May 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.

[76] arXiv:2506.05136 [pdf, other]
Title: Information Locality as an Inductive Bias for Neural Language Models
Taiga Someya, Anej Svete, Brian DuSell, Timothy J. O'Donnell, Mario Giulianelli, Ryan Cotterell
Subjects: Computation and Language (cs.CL)

Inductive biases are inherent in every machine learning system, shaping how models generalize from finite data. In the case of neural language models (LMs), debates persist as to whether these biases align with or diverge from human processing constraints. To address this issue, we propose a quantitative framework that allows for controlled investigations into the nature of these biases. Within our framework, we introduce $m$-local entropy$\unicode{x2013}$an information-theoretic measure derived from average lossy-context surprisal$\unicode{x2013}$that captures the local uncertainty of a language by quantifying how effectively the $m-1$ preceding symbols disambiguate the next symbol. In experiments on both perturbed natural language corpora and languages defined by probabilistic finite-state automata (PFSAs), we show that languages with higher $m$-local entropy are more difficult for Transformer and LSTM LMs to learn. These results suggest that neural LMs, much like humans, are highly sensitive to the local statistical structure of a language.

[77] arXiv:2506.05140 [pdf, html, other]
Title: AudioLens: A Closer Look at Auditory Attribute Perception of Large Audio-Language Models
Chih-Kai Yang, Neo Ho, Yi-Jyun Lee, Hung-yi Lee
Comments: 8 pages, 5 figures, 3 tables
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Understanding the internal mechanisms of large audio-language models (LALMs) is crucial for interpreting their behavior and improving performance. This work presents the first in-depth analysis of how LALMs internally perceive and recognize auditory attributes. By applying vocabulary projection on three state-of-the-art LALMs, we track how attribute information evolves across layers and token positions. We find that attribute information generally decreases with layer depth when recognition fails, and that resolving attributes at earlier layers correlates with better accuracy. Moreover, LALMs heavily rely on querying auditory inputs for predicting attributes instead of aggregating necessary information in hidden states at attribute-mentioning positions. Based on our findings, we demonstrate a method to enhance LALMs. Our results offer insights into auditory attribute processing, paving the way for future improvements.

[78] arXiv:2506.05142 [pdf, html, other]
Title: Do Large Language Models Judge Error Severity Like Humans?
Diege Sun, Guanyi Chen, Fan Zhao, Xiaorong Cheng, Tingting He
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) are increasingly used as automated evaluators in natural language generation, yet it remains unclear whether they can accurately replicate human judgments of error severity. In this study, we systematically compare human and LLM assessments of image descriptions containing controlled semantic errors. We extend the experimental framework of van Miltenburg et al. (2020) to both unimodal (text-only) and multimodal (text + image) settings, evaluating four error types: age, gender, clothing type, and clothing colour. Our findings reveal that humans assign varying levels of severity to different error types, with visual context significantly amplifying perceived severity for colour and type errors. Notably, most LLMs assign low scores to gender errors but disproportionately high scores to colour errors, unlike humans, who judge both as highly severe but for different reasons. This suggests that these models may have internalised social norms influencing gender judgments but lack the perceptual grounding to emulate human sensitivity to colour, which is shaped by distinct neural mechanisms. Only one of the evaluated LLMs, Doubao, replicates the human-like ranking of error severity, but it fails to distinguish between error types as clearly as humans. Surprisingly, DeepSeek-V3, a unimodal LLM, achieves the highest alignment with human judgments across both unimodal and multimodal conditions, outperforming even state-of-the-art multimodal models.

[79] arXiv:2506.05154 [pdf, html, other]
Title: Knowledgeable-r1: Policy Optimization for Knowledge Exploration in Retrieval-Augmented Generation
Chenyu Lin, Yilin Wen, Du Su, Fei Sun, Muhan Chen, Chenfu Bao, Zhonghou Lv
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR)

Retrieval-augmented generation (RAG) is a mainstream method for improving performance on knowledge-intensive tasks. However,current RAG systems often place too much emphasis on retrieved contexts. This can lead to reliance on inaccurate sources and overlook the model's inherent knowledge, especially when dealing with misleading or excessive information. To resolve this imbalance, we propose Knowledgeable-r1 that using joint sampling and define multi policy distributions in knowledge capability exploration to stimulate large language models'self-integrated utilization of parametric and contextual knowledge. Experiments show that Knowledgeable-r1 significantly enhances robustness and reasoning accuracy in both parameters and contextual conflict tasks and general RAG tasks, especially outperforming baselines by 17.07% in counterfactual scenarios and demonstrating consistent gains across RAG tasks. Our code are available at this https URL knowledgeable-r1.

[80] arXiv:2506.05166 [pdf, html, other]
Title: Dissecting Bias in LLMs: A Mechanistic Interpretability Perspective
Bhavik Chandna, Zubair Bashir, Procheta Sen
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.

[81] arXiv:2506.05167 [pdf, html, other]
Title: ECoRAG: Evidentiality-guided Compression for Long Context RAG
Yeonseok Jeong, Jinsu Kim, Dohyeon Lee, Seung-won Hwang
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR)

Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or \textbf{ECoRAG} framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at this https URL.

[82] arXiv:2506.05176 [pdf, html, other]
Title: Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, Jingren Zhou
Subjects: Computation and Language (cs.CL)

In this work, we introduce the Qwen3 Embedding series, a significant advancement over its predecessor, the GTE-Qwen series, in text embedding and reranking capabilities, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs' robust capabilities in multilingual text understanding and generation, our innovative multi-stage training pipeline combines large-scale unsupervised pre-training with supervised fine-tuning on high-quality datasets. Effective model merging strategies further ensure the robustness and adaptability of the Qwen3 Embedding series. During the training process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role in synthesizing high-quality, rich, and diverse training data across multiple domains and languages, thus enhancing the training pipeline. The Qwen3 Embedding series offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks, addressing diverse deployment scenarios where users can optimize for either efficiency or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the multilingual evaluation benchmark MTEB for text embedding, as well as in various retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval. To facilitate reproducibility and promote community-driven research and development, the Qwen3 Embedding models are publicly available under the Apache 2.0 license.

[83] arXiv:2506.05188 [pdf, html, other]
Title: Counterfactual reasoning: an analysis of in-context emergence
Moritz Miller, Bernhard Schölkopf, Siyuan Guo
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Statistics Theory (math.ST)

Large-scale neural language models (LMs) exhibit remarkable performance in in-context learning: the ability to learn and reason the input context on the fly without parameter update. This work studies in-context counterfactual reasoning in language models, that is, to predict the consequences of changes under hypothetical scenarios. We focus on studying a well-defined synthetic setup: a linear regression task that requires noise abduction, where accurate prediction is based on inferring and copying the contextual noise from factual observations. We show that language models are capable of counterfactual reasoning in this controlled setup and provide insights that counterfactual reasoning for a broad class of functions can be reduced to a transformation on in-context observations; we find self-attention, model depth, and data diversity in pre-training drive performance in Transformers. More interestingly, our findings extend beyond regression tasks and show that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under this https URL .

[84] arXiv:2506.05205 [pdf, html, other]
Title: RELIC: Evaluating Compositional Instruction Following via Language Recognition
Jackson Petty, Michael Y. Hu, Wentao Wang, Shauli Ravfogel, William Merrill, Tal Linzen
Subjects: Computation and Language (cs.CL)

Large language models (LLMs) are increasingly expected to perform tasks based only on a specification of the task provided in context, without examples of inputs and outputs; this ability is referred to as instruction following. We introduce the Recognition of Languages In-Context (RELIC) framework to evaluate instruction following using language recognition: the task of determining if a string is generated by formal grammar. Unlike many standard evaluations of LLMs' ability to use their context, this task requires composing together a large number of instructions (grammar productions) retrieved from the context. Because the languages are synthetic, the task can be increased in complexity as LLMs' skills improve, and new instances can be automatically generated, mitigating data contamination. We evaluate state-of-the-art LLMs on RELIC and find that their accuracy can be reliably predicted from the complexity of the grammar and the individual example strings, and that even the most advanced LLMs currently available show near-chance performance on more complex grammars and samples, in line with theoretical expectations. We also use RELIC to diagnose how LLMs attempt to solve increasingly difficult reasoning tasks, finding that as the complexity of the language recognition task increases, models switch to relying on shallow heuristics instead of following complex instructions.

[85] arXiv:2506.05209 [pdf, html, other]
Title: The Common Pile v0.1: An 8TB Dataset of Public Domain and Openly Licensed Text
Nikhil Kandpal, Brian Lester, Colin Raffel, Sebastian Majstorovic, Stella Biderman, Baber Abbasi, Luca Soldaini, Enrico Shippole, A. Feder Cooper, Aviya Skowron, John Kirchenbauer, Shayne Longpre, Lintang Sutawika, Alon Albalak, Zhenlin Xu, Guilherme Penedo, Loubna Ben Allal, Elie Bakouch, John David Pressman, Honglu Fan, Dashiell Stander, Guangyu Song, Aaron Gokaslan, Tom Goldstein, Brian R. Bartoldson, Bhavya Kailkhura, Tyler Murray
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Large language models (LLMs) are typically trained on enormous quantities of unlicensed text, a practice that has led to scrutiny due to possible intellectual property infringement and ethical concerns. Training LLMs on openly licensed text presents a first step towards addressing these issues, but prior data collection efforts have yielded datasets too small or low-quality to produce performant LLMs. To address this gap, we collect, curate, and release the Common Pile v0.1, an eight terabyte collection of openly licensed text designed for LLM pretraining. The Common Pile comprises content from 30 sources that span diverse domains including research papers, code, books, encyclopedias, educational materials, audio transcripts, and more. Crucially, we validate our efforts by training two 7 billion parameter LLMs on text from the Common Pile: Comma v0.1-1T and Comma v0.1-2T, trained on 1 and 2 trillion tokens respectively. Both models attain competitive performance to LLMs trained on unlicensed text with similar computational budgets, such as Llama 1 and 2 7B. In addition to releasing the Common Pile v0.1 itself, we also release the code used in its creation as well as the training mixture and checkpoints for the Comma v0.1 models.

[86] arXiv:2506.05227 [pdf, html, other]
Title: Improving Low-Resource Morphological Inflection via Self-Supervised Objectives
Adam Wiemerslage, Katharina von der Wense
Comments: ACL 2025 main
Subjects: Computation and Language (cs.CL)

Self-supervised objectives have driven major advances in NLP by leveraging large-scale unlabeled data, but such resources are scarce for many of the world's languages. Surprisingly, they have not been explored much for character-level tasks, where smaller amounts of data have the potential to be beneficial. We investigate the effectiveness of self-supervised auxiliary tasks for morphological inflection -- a character-level task highly relevant for language documentation -- in extremely low-resource settings, training encoder-decoder transformers for 19 languages and 13 auxiliary objectives. Autoencoding yields the best performance when unlabeled data is very limited, while character masked language modeling (CMLM) becomes more effective as data availability increases. Though objectives with stronger inductive biases influence model predictions intuitively, they rarely outperform standard CMLM. However, sampling masks based on known morpheme boundaries consistently improves performance, highlighting a promising direction for low-resource morphological modeling.

[87] arXiv:2506.05235 [pdf, other]
Title: Towards a Unified System of Representation for Continuity and Discontinuity in Natural Language
Ratna Kandala, Prakash Mondal
Subjects: Computation and Language (cs.CL)

Syntactic discontinuity is a grammatical phenomenon in which a constituent is split into more than one part because of the insertion of an element which is not part of the constituent. This is observed in many languages across the world such as Turkish, Russian, Japanese, Warlpiri, Navajo, Hopi, Dyirbal, Yidiny etc. Different formalisms/frameworks in current linguistic theory approach the problem of discontinuous structures in different ways. Each framework/formalism has widely been viewed as an independent and non-converging system of analysis. In this paper, we propose a unified system of representation for both continuity and discontinuity in structures of natural languages by taking into account three formalisms, in particular, Phrase Structure Grammar (PSG) for its widely used notion of constituency, Dependency Grammar (DG) for its head-dependent relations, and Categorial Grammar (CG) for its focus on functor-argument relations. We attempt to show that discontinuous expressions as well as continuous structures can be analysed through a unified mathematical derivation incorporating the representations of linguistic structure in these three grammar formalisms.

[88] arXiv:2506.05243 [pdf, html, other]
Title: CLATTER: Comprehensive Entailment Reasoning for Hallucination Detection
Ron Eliav, Arie Cattan, Eran Hirsch, Shahaf Bassan, Elias Stengel-Eskin, Mohit Bansal, Ido Dagan
Subjects: Computation and Language (cs.CL)

A common approach to hallucination detection casts it as a natural language inference (NLI) task, often using LLMs to classify whether the generated text is entailed by corresponding reference texts. Since entailment classification is a complex reasoning task, one would expect that LLMs could benefit from generating an explicit reasoning process, as in CoT reasoning or the explicit ``thinking'' of recent reasoning models. In this work, we propose that guiding such models to perform a systematic and comprehensive reasoning process -- one that both decomposes the text into smaller facts and also finds evidence in the source for each fact -- allows models to execute much finer-grained and accurate entailment decisions, leading to increased performance. To that end, we define a 3-step reasoning process, consisting of (i) claim decomposition, (ii) sub-claim attribution and entailment classification, and (iii) aggregated classification, showing that such guided reasoning indeed yields improved hallucination detection. Following this reasoning framework, we introduce an analysis scheme, consisting of several metrics that measure the quality of the intermediate reasoning steps, which provided additional empirical evidence for the improved quality of our guided reasoning scheme.

[89] arXiv:2506.05278 [pdf, html, other]
Title: Micro-Act: Mitigate Knowledge Conflict in Question Answering via Actionable Self-Reasoning
Nan Huo, Jinyang Li, Bowen Qin, Ge Qu, Xiaolong Li, Xiaodong Li, Chenhao Ma, Reynold Cheng
Comments: Accepted by ACL 2025 Main
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Retrieval-Augmented Generation (RAG) systems commonly suffer from Knowledge Conflicts, where retrieved external knowledge contradicts the inherent, parametric knowledge of large language models (LLMs). It adversely affects performance on downstream tasks such as question answering (QA). Existing approaches often attempt to mitigate conflicts by directly comparing two knowledge sources in a side-by-side manner, but this can overwhelm LLMs with extraneous or lengthy contexts, ultimately hindering their ability to identify and mitigate inconsistencies. To address this issue, we propose Micro-Act a framework with a hierarchical action space that automatically perceives context complexity and adaptively decomposes each knowledge source into a sequence of fine-grained comparisons. These comparisons are represented as actionable steps, enabling reasoning beyond the superficial context. Through extensive experiments on five benchmark datasets, Micro-Act consistently achieves significant increase in QA accuracy over state-of-the-art baselines across all 5 datasets and 3 conflict types, especially in temporal and semantic types where all baselines fail significantly. More importantly, Micro-Act exhibits robust performance on non-conflict questions simultaneously, highlighting its practical value in real-world RAG applications.

[90] arXiv:2506.05305 [pdf, html, other]
Title: ProRefine: Inference-time Prompt Refinement with Textual Feedback
Deepak Pandita, Tharindu Cyril Weerasooriya, Ankit Parag Shah, Christopher M. Homan, Wei Wei
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.

[91] arXiv:2506.05314 [pdf, html, other]
Title: Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Taha Entesari, Arman Hatami, Rinat Khaziev, Anil Ramakrishna, Mahyar Fazlyab
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.

[92] arXiv:2506.05334 [pdf, html, other]
Title: Search Arena: Analyzing Search-Augmented LLMs
Mihran Miroyan, Tsung-Han Wu, Logan King, Tianle Li, Jiayi Pan, Xinyan Hu, Wei-Lin Chiang, Anastasios N. Angelopoulos, Trevor Darrell, Narges Norouzi, Joseph E. Gonzalez
Comments: Preprint. Code: this https URL. Dataset: this https URL
Subjects: Computation and Language (cs.CL); Information Retrieval (cs.IR); Machine Learning (cs.LG)

Search-augmented language models combine web search with Large Language Models (LLMs) to improve response groundedness and freshness. However, analyzing these systems remains challenging: existing datasets are limited in scale and narrow in scope, often constrained to static, single-turn, fact-checking questions. In this work, we introduce Search Arena, a crowd-sourced, large-scale, human-preference dataset of over 24,000 paired multi-turn user interactions with search-augmented LLMs. The dataset spans diverse intents and languages, and contains full system traces with around 12,000 human preference votes. Our analysis reveals that user preferences are influenced by the number of citations, even when the cited content does not directly support the attributed claims, uncovering a gap between perceived and actual credibility. Furthermore, user preferences vary across cited sources, revealing that community-driven platforms are generally preferred and static encyclopedic sources are not always appropriate and reliable. To assess performance across different settings, we conduct cross-arena analyses by testing search-augmented LLMs in a general-purpose chat environment and conventional LLMs in search-intensive settings. We find that web search does not degrade and may even improve performance in non-search settings; however, the quality in search settings is significantly affected if solely relying on the model's parametric knowledge. We open-sourced the dataset to support future research in this direction. Our dataset and code are available at: this https URL.

[93] arXiv:2506.05339 [pdf, html, other]
Title: Flattery, Fluff, and Fog: Diagnosing and Mitigating Idiosyncratic Biases in Preference Models
Anirudh Bharadwaj, Chaitanya Malaviya, Nitish Joshi, Mark Yatskar
Comments: Code and data available at this https URL
Subjects: Computation and Language (cs.CL)

Language models serve as proxies for human preference judgements in alignment and evaluation, yet they exhibit systematic miscalibration, prioritizing superficial patterns over substantive qualities. This bias manifests as overreliance on features like length, structure, and style, leading to issues like reward hacking and unreliable evaluations. Evidence suggests these biases originate in artifacts in human training data. In this work, we systematically investigate the relationship between training data biases and preference model miscalibration across five idiosyncratic features of language model generations: length, structure, jargon, sycophancy and vagueness. Using controlled counterfactual pairs, we first quantify the extent to which preference models favor responses with magnified biases (skew), finding this preference occurs in >60% of instances, and model preferences show high miscalibration (~40%) compared to human preferences. Notably, bias features only show mild negative correlations to human preference labels (mean r_human = -0.12) but show moderately strong positive correlations with labels from a strong reward model (mean r_model = +0.36), suggesting that models may overrely on spurious cues. To mitigate these issues, we propose a simple post-training method based on counterfactual data augmentation (CDA) using synthesized contrastive examples. Finetuning models with CDA reduces average miscalibration from 39.4% to 32.5% and average absolute skew difference from 20.5% to 10.0%, while maintaining overall RewardBench performance, showing that targeted debiasing is effective for building reliable preference models.

Cross submissions (showing 32 of 32 entries)

[94] arXiv:2506.04245 (cross-list from cs.AI) [pdf, html, other]
Title: Contextual Integrity in LLMs via Reasoning and Reinforcement Learning
Guangchen Lan, Huseyin A. Inan, Sahar Abdelnabi, Janardhan Kulkarni, Lukas Wutschitz, Reza Shokri, Christopher G. Brinton, Robert Sim
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

As the era of autonomous agents making decisions on behalf of users unfolds, ensuring contextual integrity (CI) -- what is the appropriate information to share while carrying out a certain task -- becomes a central question to the field. We posit that CI demands a form of reasoning where the agent needs to reason about the context in which it is operating. To test this, we first prompt LLMs to reason explicitly about CI when deciding what information to disclose. We then extend this approach by developing a reinforcement learning (RL) framework that further instills in models the reasoning necessary to achieve CI. Using a synthetic, automatically created, dataset of only $\sim700$ examples but with diverse contexts and information disclosure norms, we show that our method substantially reduces inappropriate information disclosure while maintaining task performance across multiple model sizes and families. Importantly, improvements transfer from this synthetic dataset to established CI benchmarks such as PrivacyLens that has human annotations and evaluates privacy leakage of AI assistants in actions and tool calls.

[95] arXiv:2506.04252 (cross-list from cs.AI) [pdf, html, other]
Title: A Graph-Retrieval-Augmented Generation Framework Enhances Decision-Making in the Circular Economy
Yang Zhao, Chengxiao Dai, Dusit Niyato, Chuan Fu Tan, Keyi Xiang, Yueyang Wang, Zhiquan Yeo, Daren Tan Zong Loong, Jonathan Low Zhaozhi, Eugene H.Z. HO
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Large language models (LLMs) hold promise for sustainable manufacturing, but often hallucinate industrial codes and emission factors, undermining regulatory and investment decisions. We introduce CircuGraphRAG, a retrieval-augmented generation (RAG) framework that grounds LLMs outputs in a domain-specific knowledge graph for the circular economy. This graph connects 117,380 industrial and waste entities with classification codes and GWP100 emission data, enabling structured multi-hop reasoning. Natural language queries are translated into SPARQL and verified subgraphs are retrieved to ensure accuracy and traceability. Compared with Standalone LLMs and Naive RAG, CircuGraphRAG achieves superior performance in single-hop and multi-hop question answering, with ROUGE-L F1 scores up to 1.0, while baseline scores below 0.08. It also improves efficiency, halving the response time and reducing token usage by 16% in representative tasks. CircuGraphRAG provides fact-checked, regulatory-ready support for circular economy planning, advancing reliable, low-carbon resource decision making.

[96] arXiv:2506.04353 (cross-list from cs.CV) [pdf, html, other]
Title: ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding
Ankit Pal, Jung-Oh Lee, Xiaoman Zhang, Malaikannan Sankarasubbu, Seunghyeon Roh, Won Jung Kim, Meesun Lee, Pranav Rajpurkar
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computational Engineering, Finance, and Science (cs.CE); Computation and Language (cs.CL); Machine Learning (cs.LG)

We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at this https URL

[97] arXiv:2506.04397 (cross-list from eess.AS) [pdf, other]
Title: Can we reconstruct a dysarthric voice with the large speech model Parler TTS?
Ariadna Sanchez, Simon King
Comments: Accepted at Interspeech 2025
Subjects: Audio and Speech Processing (eess.AS); Computation and Language (cs.CL); Sound (cs.SD)

Speech disorders can make communication hard or even impossible for those who develop them. Personalised Text-to-Speech is an attractive option as a communication aid. We attempt voice reconstruction using a large speech model, with which we generate an approximation of a dysarthric speaker's voice prior to the onset of their condition. In particular, we investigate whether a state-of-the-art large speech model, Parler TTS, can generate intelligible speech while maintaining speaker identity. We curate a dataset and annotate it with relevant speaker and intelligibility information, and use this to fine-tune the model. Our results show that the model can indeed learn to generate from the distribution of this challenging data, but struggles to control intelligibility and to maintain consistent speaker identity. We propose future directions to improve controllability of this class of model, for the voice reconstruction task.

[98] arXiv:2506.04410 (cross-list from cs.AI) [pdf, html, other]
Title: Matter-of-Fact: A Benchmark for Verifying the Feasibility of Literature-Supported Claims in Materials Science
Peter Jansen, Samiah Hassan, Ruoyao Wang
Comments: 8 pages
Subjects: Artificial Intelligence (cs.AI); Materials Science (cond-mat.mtrl-sci); Computation and Language (cs.CL)

Contemporary approaches to assisted scientific discovery use language models to automatically generate large numbers of potential hypothesis to test, while also automatically generating code-based experiments to test those hypotheses. While hypotheses can be comparatively inexpensive to generate, automated experiments can be costly, particularly when run at scale (i.e. thousands of experiments). Developing the capacity to filter hypotheses based on their feasibility would allow discovery systems to run at scale, while increasing their likelihood of making significant discoveries. In this work we introduce Matter-of-Fact, a challenge dataset for determining the feasibility of hypotheses framed as claims. Matter-of-Fact includes 8.4k claims extracted from scientific articles spanning four high-impact contemporary materials science topics, including superconductors, semiconductors, batteries, and aerospace materials, while including qualitative and quantitative claims from theoretical, experimental, and code/simulation results. We show that strong baselines that include retrieval augmented generation over scientific literature and code generation fail to exceed 72% performance on this task (chance performance is 50%), while domain-expert verification suggests nearly all are solvable -- highlighting both the difficulty of this task for current models, and the potential to accelerate scientific discovery by making near-term progress.

[99] arXiv:2506.04461 (cross-list from cs.LG) [pdf, html, other]
Title: Behavioural vs. Representational Systematicity in End-to-End Models: An Opinionated Survey
Ivan Vegner, Sydelle de Souza, Valentin Forch, Martha Lewis, Leonidas A.A. Doumas
Comments: To appear at ACL 2025 Main Conference
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

A core aspect of compositionality, systematicity is a desirable property in ML models as it enables strong generalization to novel contexts. This has led to numerous studies proposing benchmarks to assess systematic generalization, as well as models and training regimes designed to enhance it. Many of these efforts are framed as addressing the challenge posed by Fodor and Pylyshyn. However, while they argue for systematicity of representations, existing benchmarks and models primarily focus on the systematicity of behaviour. We emphasize the crucial nature of this distinction. Furthermore, building on Hadley's (1994) taxonomy of systematic generalization, we analyze the extent to which behavioural systematicity is tested by key benchmarks in the literature across language and vision. Finally, we highlight ways of assessing systematicity of representations in ML models as practiced in the field of mechanistic interpretability.

[100] arXiv:2506.04482 (cross-list from cs.CY) [pdf, html, other]
Title: Understanding and Meeting Practitioner Needs When Measuring Representational Harms Caused by LLM-Based Systems
Emma Harvey, Emily Sheng, Su Lin Blodgett, Alexandra Chouldechova, Jean Garcia-Gathright, Alexandra Olteanu, Hanna Wallach
Comments: Findings of the Association for Computational Linguistics: ACL 2025
Subjects: Computers and Society (cs.CY); Computation and Language (cs.CL)

The NLP research community has made publicly available numerous instruments for measuring representational harms caused by large language model (LLM)-based systems. These instruments have taken the form of datasets, metrics, tools, and more. In this paper, we examine the extent to which such instruments meet the needs of practitioners tasked with evaluating LLM-based systems. Via semi-structured interviews with 12 such practitioners, we find that practitioners are often unable to use publicly available instruments for measuring representational harms. We identify two types of challenges. In some cases, instruments are not useful because they do not meaningfully measure what practitioners seek to measure or are otherwise misaligned with practitioner needs. In other cases, instruments - even useful instruments - are not used by practitioners due to practical and institutional barriers impeding their uptake. Drawing on measurement theory and pragmatic measurement, we provide recommendations for addressing these challenges to better meet practitioner needs.

[101] arXiv:2506.04518 (cross-list from eess.AS) [pdf, html, other]
Title: Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model
Haibin Wu, Yuxuan Hu, Ruchao Fan, Xiaofei Wang, Kenichi Kumatani, Bo Ren, Jianwei Yu, Heng Lu, Lijuan Wang, Yao Qian, Jinyu Li
Subjects: Audio and Speech Processing (eess.AS); Computation and Language (cs.CL)

Speech language models (Speech LMs) enable end-to-end speech-text modelling within a single model, offering a promising direction for spoken dialogue systems. The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality. In this work, we systematically compare representative joint speech-text decoding strategies-including the interleaved, and parallel generation paradigms-under a controlled experimental setup using the same base language model, speech tokenizer and training data. Our results show that the interleaved approach achieves the best alignment. However it suffers from slow inference due to long token sequence length. To address this, we propose a novel early-stop interleaved (ESI) pattern that not only significantly accelerates decoding but also yields slightly better performance. Additionally, we curate high-quality question answering (QA) datasets to further improve speech QA performance.

[102] arXiv:2506.04527 (cross-list from cs.SD) [pdf, html, other]
Title: Grapheme-Coherent Phonemic and Prosodic Annotation of Speech by Implicit and Explicit Grapheme Conditioning
Hien Ohnaka, Yuma Shirahata, Byeongseon Park, Ryuichi Yamamoto
Comments: 5 pages, 2 figures, and 4 tables, accepted to INTERSPEECH 2025
Subjects: Sound (cs.SD); Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

We propose a model to obtain phonemic and prosodic labels of speech that are coherent with graphemes. Unlike previous methods that simply fine-tune a pre-trained ASR model with the labels, the proposed model conditions the label generation on corresponding graphemes by two methods: 1) Add implicit grapheme conditioning through prompt encoder using pre-trained BERT features. 2) Explicitly prune the label hypotheses inconsistent with the grapheme during inference. These methods enable obtaining parallel data of speech, the labels, and graphemes, which is applicable to various downstream tasks such as text-to-speech and accent estimation from text. Experiments showed that the proposed method significantly improved the consistency between graphemes and the predicted labels. Further, experiments on accent estimation task confirmed that the created parallel data by the proposed method effectively improve the estimation accuracy.

[103] arXiv:2506.04566 (cross-list from cs.LG) [pdf, other]
Title: Clustering and Median Aggregation Improve Differentially Private Inference
Kareem Amin, Salman Avestimehr, Sara Babakniya, Alex Bie, Weiwei Kong, Natalia Ponomareva, Umar Syed
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Differentially private (DP) language model inference is an approach for generating private synthetic text. A sensitive input example is used to prompt an off-the-shelf large language model (LLM) to produce a similar example. Multiple examples can be aggregated together to formally satisfy the DP guarantee.
Prior work creates inference batches by sampling sensitive inputs uniformly at random. We show that uniform sampling degrades the quality of privately generated text, especially when the sensitive examples concern heterogeneous topics.
We remedy this problem by clustering the input data before selecting inference batches. Next, we observe that clustering also leads to more similar next-token predictions across inferences. We use this insight to introduce a new algorithm that aggregates next token statistics by privately computing medians instead of averages. This approach leverages the fact that the median has decreased local sensitivity when next token predictions are similar, allowing us to state a data-dependent and ex-post DP guarantee about the privacy properties of this algorithm. Finally, we demonstrate improvements in terms of representativeness metrics (e.g., MAUVE) as well as downstream task performance. We show that our method produces high-quality synthetic data at significantly lower privacy cost than a previous state-of-the-art method.

[104] arXiv:2506.04652 (cross-list from eess.AS) [pdf, html, other]
Title: EMO-Debias: Benchmarking Gender Debiasing Techniques in Multi-Label Speech Emotion Recognition
Yi-Cheng Lin, Huang-Cheng Chou, Yu-Hsuan Li Liang, Hung-yi Lee
Comments: 8 pages
Subjects: Audio and Speech Processing (eess.AS); Computation and Language (cs.CL)

Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.

[105] arXiv:2506.04681 (cross-list from cs.LG) [pdf, html, other]
Title: Urania: Differentially Private Insights into AI Use
Daogao Liu, Edith Cohen, Badih Ghazi, Peter Kairouz, Pritish Kamath, Alexander Knop, Ravi Kumar, Pasin Manurangsi, Adam Sealfon, Da Yu, Chiyuan Zhang
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Cryptography and Security (cs.CR); Computers and Society (cs.CY)

We introduce $Urania$, a novel framework for generating insights about LLM chatbot interactions with rigorous differential privacy (DP) guarantees. The framework employs a private clustering mechanism and innovative keyword extraction methods, including frequency-based, TF-IDF-based, and LLM-guided approaches. By leveraging DP tools such as clustering, partition selection, and histogram-based summarization, $Urania$ provides end-to-end privacy protection. Our evaluation assesses lexical and semantic content preservation, pair similarity, and LLM-based metrics, benchmarking against a non-private Clio-inspired pipeline (Tamkin et al., 2024). Moreover, we develop a simple empirical privacy evaluation that demonstrates the enhanced robustness of our DP pipeline. The results show the framework's ability to extract meaningful conversational insights while maintaining stringent user privacy, effectively balancing data utility with privacy preservation.

[106] arXiv:2506.04711 (cross-list from cs.SD) [pdf, html, other]
Title: LLM-based phoneme-to-grapheme for phoneme-based speech recognition
Te Ma, Min Bi, Saierdaer Yusuyin, Hao Huang, Zhijian Ou
Comments: Interspeech 2025
Subjects: Sound (cs.SD); Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

In automatic speech recognition (ASR), phoneme-based multilingual pre-training and crosslingual fine-tuning is attractive for its high data efficiency and competitive results compared to subword-based models. However, Weighted Finite State Transducer (WFST) based decoding is limited by its complex pipeline and inability to leverage large language models (LLMs). Therefore, we propose LLM-based phoneme-to-grapheme (LLM-P2G) decoding for phoneme-based ASR, consisting of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G). A challenge is that there seems to have information loss in cascading S2P and P2G. To address this challenge, we propose two training strategies: data augmentation with noisy phonemes (DANP), and randomized top-$K$ marginalized (TKM) training and decoding. Our experimental results show that LLM-P2G outperforms WFST-based systems in crosslingual ASR for Polish and German, by relative WER reductions of 3.6% and 6.9% respectively.

[107] arXiv:2506.04734 (cross-list from cs.AI) [pdf, html, other]
Title: Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Lin Sun, Weihong Lin, Jinzhu Wu, Yongfu Zhu, Xiaoqi Jian, Guangxiang Zhao, Change Jia, Linglin Zhang, Sai-er Hu, Yuhan Wu, Xiangzheng Zhang
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.

[108] arXiv:2506.04760 (cross-list from cs.IR) [pdf, html, other]
Title: Exp4Fuse: A Rank Fusion Framework for Enhanced Sparse Retrieval using Large Language Model-based Query Expansion
Lingyuan Liu, Mengxiang Zhang
Subjects: Information Retrieval (cs.IR); Computation and Language (cs.CL)

Large Language Models (LLMs) have shown potential in generating hypothetical documents for query expansion, thereby enhancing information retrieval performance. However, the efficacy of this method is highly dependent on the quality of the generated documents, which often requires complex prompt strategies and the integration of advanced dense retrieval techniques. This can be both costly and computationally intensive. To mitigate these limitations, we explore the use of zero-shot LLM-based query expansion to improve sparse retrieval, particularly for learned sparse retrievers. We introduce a novel fusion ranking framework, Exp4Fuse, which enhances the performance of sparse retrievers through an indirect application of zero-shot LLM-based query expansion. Exp4Fuse operates by simultaneously considering two retrieval routes-one based on the original query and the other on the LLM-augmented query. It then generates two ranked lists using a sparse retriever and fuses them using a modified reciprocal rank fusion method. We conduct extensive evaluations of Exp4Fuse against leading LLM-based query expansion methods and advanced retrieval techniques on three MS MARCO-related datasets and seven low-resource datasets. Experimental results reveal that Exp4Fuse not only surpasses existing LLM-based query expansion methods in enhancing sparse retrievers but also, when combined with advanced sparse retrievers, achieves SOTA results on several benchmarks. This highlights the superior performance and effectiveness of Exp4Fuse in improving query expansion for sparse retrieval.

[109] arXiv:2506.04762 (cross-list from cs.IR) [pdf, html, other]
Title: GOLFer: Smaller LM-Generated Documents Hallucination Filter & Combiner for Query Expansion in Information Retrieval
Lingyuan Liu, Mengxiang Zhang
Subjects: Information Retrieval (cs.IR); Computation and Language (cs.CL)

Large language models (LLMs)-based query expansion for information retrieval augments queries with generated hypothetical documents with LLMs. However, its performance relies heavily on the scale of the language models (LMs), necessitating larger, more advanced LLMs. This approach is costly, computationally intensive, and often has limited accessibility. To address these limitations, we introduce GOLFer - Smaller LMs-Generated Documents Hallucination Filter & Combiner - a novel method leveraging smaller open-source LMs for query expansion. GOLFer comprises two modules: a hallucination filter and a documents combiner. The former detects and removes non-factual and inconsistent sentences in generated documents, a common issue with smaller LMs, while the latter combines the filtered content with the query using a weight vector to balance their influence. We evaluate GOLFer alongside dominant LLM-based query expansion methods on three web search and ten low-resource datasets. Experimental results demonstrate that GOLFer consistently outperforms other methods using smaller LMs, and maintains competitive performance against methods using large-size LLMs, demonstrating its effectiveness.

[110] arXiv:2506.04831 (cross-list from cs.LG) [pdf, html, other]
Title: From EHRs to Patient Pathways: Scalable Modeling of Longitudinal Health Trajectories with LLMs
Chantal Pellegrini, Ege Özsoy, David Bani-Harouni, Matthias Keicher, Nassir Navab
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Healthcare systems face significant challenges in managing and interpreting vast, heterogeneous patient data for personalized care. Existing approaches often focus on narrow use cases with a limited feature space, overlooking the complex, longitudinal interactions needed for a holistic understanding of patient health. In this work, we propose a novel approach to patient pathway modeling by transforming diverse electronic health record (EHR) data into a structured representation and designing a holistic pathway prediction model, EHR2Path, optimized to predict future health trajectories. Further, we introduce a novel summary mechanism that embeds long-term temporal context into topic-specific summary tokens, improving performance over text-only models, while being much more token-efficient. EHR2Path demonstrates strong performance in both next time-step prediction and longitudinal simulation, outperforming competitive baselines. It enables detailed simulations of patient trajectories, inherently targeting diverse evaluation tasks, such as forecasting vital signs, lab test results, or length-of-stay, opening a path towards predictive and personalized healthcare.

[111] arXiv:2506.04909 (cross-list from cs.AI) [pdf, html, other]
Title: When Thinking LLMs Lie: Unveiling the Strategic Deception in Representations of Reasoning Models
Kai Wang, Yihao Zhang, Meng Sun
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Cryptography and Security (cs.CR); Machine Learning (cs.LG)

The honesty of large language models (LLMs) is a critical alignment challenge, especially as advanced systems with chain-of-thought (CoT) reasoning may strategically deceive humans. Unlike traditional honesty issues on LLMs, which could be possibly explained as some kind of hallucination, those models' explicit thought paths enable us to study strategic deception--goal-driven, intentional misinformation where reasoning contradicts outputs. Using representation engineering, we systematically induce, detect, and control such deception in CoT-enabled LLMs, extracting "deception vectors" via Linear Artificial Tomography (LAT) for 89% detection accuracy. Through activation steering, we achieve a 40% success rate in eliciting context-appropriate deception without explicit prompts, unveiling the specific honesty-related issue of reasoning models and providing tools for trustworthy AI alignment.

[112] arXiv:2506.04913 (cross-list from cs.LG) [pdf, html, other]
Title: Dissecting Long Reasoning Models: An Empirical Study
Yongyu Mu, Jiali Zeng, Bei Li, Xinyan Guan, Fandong Meng, Jie Zhou, Tong Xiao, Jingbo Zhu
Comments: Working in process
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Despite recent progress in training long-context reasoning models via reinforcement learning (RL), several open questions and counterintuitive behaviors remain. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in RL, revealing that positive samples mainly facilitate data fitting, whereas negative samples significantly enhance generalization and robustness. Interestingly, training solely on negative samples can rival standard RL training performance. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two straightforward strategies, including relative length rewards and offline sample injection, to better leverage these data and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that multiple evaluation runs mitigate this issue.

[113] arXiv:2506.04997 (cross-list from cs.IR) [pdf, html, other]
Title: Towards Storage-Efficient Visual Document Retrieval: An Empirical Study on Reducing Patch-Level Embeddings
Yubo Ma, Jinsong Li, Yuhang Zang, Xiaobao Wu, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Haodong Duan, Jiaqi Wang, Yixin Cao, Aixin Sun
Comments: Accepted by ACL 2025 findings
Subjects: Information Retrieval (cs.IR); Computation and Language (cs.CL)

Despite the strong performance of ColPali/ColQwen2 in Visualized Document Retrieval (VDR), it encodes each page into multiple patch-level embeddings and leads to excessive memory usage. This empirical study investigates methods to reduce patch embeddings per page at minimum performance degradation. We evaluate two token-reduction strategies: token pruning and token merging. Regarding token pruning, we surprisingly observe that a simple random strategy outperforms other sophisticated pruning methods, though still far from satisfactory. Further analysis reveals that pruning is inherently unsuitable for VDR as it requires removing certain page embeddings without query-specific information. Turning to token merging (more suitable for VDR), we search for the optimal combinations of merging strategy across three dimensions and develop Light-ColPali/ColQwen2. It maintains 98.2% of retrieval performance with only 11.8% of original memory usage, and preserves 94.6% effectiveness at 2.8% memory footprint. We expect our empirical findings and resulting Light-ColPali/ColQwen2 offer valuable insights and establish a competitive baseline for future research towards efficient VDR.

[114] arXiv:2506.05087 (cross-list from cs.CV) [pdf, other]
Title: Interpretable Multimodal Framework for Human-Centered Street Assessment: Integrating Visual-Language Models for Perceptual Urban Diagnostics
HaoTian Lan
Comments: 24 pages, 10 figures
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

While objective street metrics derived from imagery or GIS have become standard in urban analytics, they remain insufficient to capture subjective perceptions essential to inclusive urban design. This study introduces a novel Multimodal Street Evaluation Framework (MSEF) that fuses a vision transformer (VisualGLM-6B) with a large language model (GPT-4), enabling interpretable dual-output assessment of streetscapes. Leveraging over 15,000 annotated street-view images from Harbin, China, we fine-tune the framework using LoRA and P-Tuning v2 for parameter-efficient adaptation. The model achieves an F1 score of 0.84 on objective features and 89.3 percent agreement with aggregated resident perceptions, validated across stratified socioeconomic geographies. Beyond classification accuracy, MSEF captures context-dependent contradictions: for instance, informal commerce boosts perceived vibrancy while simultaneously reducing pedestrian comfort. It also identifies nonlinear and semantically contingent patterns -- such as the divergent perceptual effects of architectural transparency across residential and commercial zones -- revealing the limits of universal spatial heuristics. By generating natural-language rationales grounded in attention mechanisms, the framework bridges sensory data with socio-affective inference, enabling transparent diagnostics aligned with SDG 11. This work offers both methodological innovation in urban perception modeling and practical utility for planning systems seeking to reconcile infrastructural precision with lived experience.

[115] arXiv:2506.05146 (cross-list from cs.CV) [pdf, html, other]
Title: CIVET: Systematic Evaluation of Understanding in VLMs
Massimo Rizzoli, Simone Alghisi, Olha Khomyn, Gabriel Roccabruna, Seyed Mahed Mousavi, Giuseppe Riccardi
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systematiC evaluatIon Via controllEd sTimuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs' understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.

[116] arXiv:2506.05213 (cross-list from cs.AI) [pdf, other]
Title: LLM-First Search: Self-Guided Exploration of the Solution Space
Nathan Herr, Tim Rocktäschel, Roberta Raileanu
Comments: 9 main pages, 2 figures, 2 tables, 36 appendix pages
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute, often by framing problem-solving as a search process. While methods like Monte Carlo Tree Search (MCTS) have proven effective in some domains, their reliance on fixed exploration hyperparameters limits their adaptability across tasks of varying difficulty, rendering them impractical or expensive in certain settings. In this paper, we propose \textbf{LLM-First Search (LFS)}, a novel \textit{LLM Self-Guided Search} method that removes the need for pre-defined search strategies by empowering the LLM to autonomously control the search process via self-guided exploration. Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether to pursue the current search path or explore alternative branches based on its internal scoring mechanisms. This enables more flexible and context-sensitive reasoning without requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts' Breadth First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been used to achieve SotA results on a range of challenging reasoning tasks. We found that LFS (1) performs better on more challenging tasks without additional tuning, (2) is more computationally efficient compared to the other methods, especially when powered by a stronger model, (3) scales better with stronger models, due to its LLM-First design, and (4) scales better with increased compute budget. Our code is publicly available at \href{this https URL}{LLM-First-Search}.

[117] arXiv:2506.05214 (cross-list from cs.LG) [pdf, html, other]
Title: Mitigating Degree Bias Adaptively with Hard-to-Learn Nodes in Graph Contrastive Learning
Jingyu Hu, Hongbo Bo, Jun Hong, Xiaowei Liu, Weiru Liu
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Graph Neural Networks (GNNs) often suffer from degree bias in node classification tasks, where prediction performance varies across nodes with different degrees. Several approaches, which adopt Graph Contrastive Learning (GCL), have been proposed to mitigate this bias. However, the limited number of positive pairs and the equal weighting of all positives and negatives in GCL still lead to low-degree nodes acquiring insufficient and noisy information. This paper proposes the Hardness Adaptive Reweighted (HAR) contrastive loss to mitigate degree bias. It adds more positive pairs by leveraging node labels and adaptively weights positive and negative pairs based on their learning hardness. In addition, we develop an experimental framework named SHARP to extend HAR to a broader range of scenarios. Both our theoretical analysis and experiments validate the effectiveness of SHARP. The experimental results across four datasets show that SHARP achieves better performance against baselines at both global and degree levels.

[118] arXiv:2506.05229 (cross-list from cs.LG) [pdf, html, other]
Title: Diagonal Batching Unlocks Parallelism in Recurrent Memory Transformers for Long Contexts
Danil Sivtsov, Ivan Rodkin, Gleb Kuzmin, Yuri Kuratov, Ivan Oseledets
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Transformer models struggle with long-context inference due to their quadratic time and linear memory complexity. Recurrent Memory Transformers (RMTs) offer a solution by reducing the asymptotic cost to linear time and constant memory usage. However, their memory update mechanism leads to sequential execution, causing a performance bottleneck.
We introduce Diagonal Batching, a scheduling scheme that unlocks parallelism across segments in RMTs while preserving exact recurrence. This approach eliminates the sequential constraint, enabling efficient GPU inference even for single long-context inputs without complex batching and pipelining techniques. Because the technique is purely a run-time computation reordering, existing RMT models adopt it with no retraining.
Applied to a LLaMA-1B ARMT model, Diagonal Batching yields a 3.3x speedup over standard full-attention LLaMA-1B and a 1.8x speedup over the sequential RMT implementation on 131,072-token sequences. By removing sequential bottleneck, Diagonal Batching reduces inference cost and latency, thereby strengthening RMTs as a practical solution for real-world, long-context applications.

[119] arXiv:2506.05233 (cross-list from cs.LG) [pdf, html, other]
Title: MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maximilian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans, Rif A. Saurous, Guillaume Lajoie, Charlotte Frenkel, Razvan Pascanu, Blaise Agüera y Arcas, João Sacramento
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, transformers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.

[120] arXiv:2506.05309 (cross-list from cs.MA) [pdf, html, other]
Title: Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
Niv Eckhaus, Uri Berger, Gabriel Stanovsky
Subjects: Multiagent Systems (cs.MA); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are inherently asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns; therefore, the decision of when to speak forms a crucial part of the participant's decision making. In this work, we develop an adaptive asynchronous LLM-agent which, in addition to determining what to say, also decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, including both human participants, as well as our asynchronous agent. Overall, our agent performs on par with human players, both in game performance, as well as in its ability to blend in with the other human players. Our analysis shows that the agent's behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We release all our data and code to support and encourage further research for more realistic asynchronous communication between LLM agents. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.

[121] arXiv:2506.05316 (cross-list from cs.LG) [pdf, html, other]
Title: Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay
Yifan Sun, Jingyan Shen, Yibin Wang, Tianyu Chen, Zhendong Wang, Mingyuan Zhou, Huan Zhang
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism that reuses recent rollouts, lowering per-step computation while maintaining stable updates. Extensive experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.

[122] arXiv:2506.05332 (cross-list from cs.CV) [pdf, html, other]
Title: Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Jingyang Lin, Jialian Wu, Ximeng Sun, Ze Wang, Jiang Liu, Yusheng Su, Xiaodong Yu, Hao Chen, Jiebo Luo, Zicheng Liu, Emad Barsoum
Comments: Project page: this https URL
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.

[123] arXiv:2506.05333 (cross-list from cs.LG) [pdf, html, other]
Title: Kinetics: Rethinking Test-Time Scaling Laws
Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, Beidi Chen
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-$N$, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at this https URL.

[124] arXiv:2506.05345 (cross-list from cs.LG) [pdf, html, other]
Title: Inference-Time Hyper-Scaling with KV Cache Compression
Adrian Łańcucki, Konrad Staniszewski, Piotr Nawrot, Edoardo M. Ponti
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference runtime and memory load. For instance, we enhance Qwen-R1 32B by an average of 9.1 points on AIME 24, 7.6 on GPQA, and 9.6 on LiveCodeBench across compute budgets.

[125] arXiv:2506.05346 (cross-list from cs.CR) [pdf, html, other]
Title: Why LLM Safety Guardrails Collapse After Fine-tuning: A Similarity Analysis Between Alignment and Fine-tuning Datasets
Lei Hsiung, Tianyu Pang, Yung-Chen Tang, Linyue Song, Tsung-Yi Ho, Pin-Yu Chen, Yaoqing Yang
Comments: Project Page: this https URL
Subjects: Cryptography and Security (cs.CR); Computation and Language (cs.CL); Machine Learning (cs.LG)

Recent advancements in large language models (LLMs) have underscored their vulnerability to safety alignment jailbreaks, particularly when subjected to downstream fine-tuning. However, existing mitigation strategies primarily focus on reactively addressing jailbreak incidents after safety guardrails have been compromised, removing harmful gradients during fine-tuning, or continuously reinforcing safety alignment throughout fine-tuning. As such, they tend to overlook a critical upstream factor: the role of the original safety-alignment data. This paper therefore investigates the degradation of safety guardrails through the lens of representation similarity between upstream alignment datasets and downstream fine-tuning tasks. Our experiments demonstrate that high similarity between these datasets significantly weakens safety guardrails, making models more susceptible to jailbreaks. Conversely, low similarity between these two types of datasets yields substantially more robust models and thus reduces harmfulness score by up to 10.33%. By highlighting the importance of upstream dataset design in the building of durable safety guardrails and reducing real-world vulnerability to jailbreak attacks, these findings offer actionable insights for fine-tuning service providers.

Replacement submissions (showing 105 of 105 entries)

[126] arXiv:2304.01481 (replaced) [pdf, html, other]
Title: The Vector Grounding Problem
Dimitri Coelho Mollo, Raphaël Millière
Subjects: Computation and Language (cs.CL)

The remarkable performance of large language models (LLMs) on complex linguistic tasks has sparked debate about their capabilities. Unlike humans, these models learn language solely from textual data without directly interacting with the world. Yet they generate seemingly meaningful text on diverse topics. This achievement has renewed interest in the classical `Symbol Grounding Problem' -- the question of whether the internal representations and outputs of symbolic AI systems can possess intrinsic meaning that is not parasitic on external interpretation. Although modern LLMs compute over vectors rather than symbols, an analogous problem arises for these systems, which we call the Vector Grounding Problem. This paper has two main goals. First, we distinguish five main notions of grounding that are often conflated in the literature, and argue that only one of them, which we call referential grounding, is relevant to the Vector Grounding Problem. Second, drawing on philosophical theories of representational content, we provide two arguments for the claim that LLMs and related systems can achieve referential grounding: (1) through preference fine-tuning methods that explicitly establish world-involving functions, and (2) through pre-training alone, which in limited domains may select for internal states with world-involving content, as mechanistic interpretability research suggests. Through these pathways, LLMs can establish connections to the world sufficient for intrinsic meaning. One potentially surprising implication of our discussion is that that multimodality and embodiment are neither necessary nor sufficient to overcome the Grounding Problem.

[127] arXiv:2402.12649 (replaced) [pdf, html, other]
Title: Bias in Language Models: Beyond Trick Tests and Toward RUTEd Evaluation
Kristian Lum, Jacy Reese Anthis, Kevin Robinson, Chirag Nagpal, Alexander D'Amour
Comments: Published in ACL 2025
Subjects: Computation and Language (cs.CL); Applications (stat.AP)

Standard benchmarks of bias and fairness in large language models (LLMs) measure the association between the user attributes stated or implied by a prompt and the LLM's short text response, but human-AI interaction increasingly requires long-form and context-specific system output to solve real-world tasks. In the commonly studied domain of gender-occupation bias, we test whether these benchmarks are robust to lengthening the LLM responses as a measure of Realistic Use and Tangible Effects (i.e., RUTEd evaluations). From the current literature, we adapt three standard bias metrics (neutrality, skew, and stereotype) and develop analogous RUTEd evaluations from three contexts of real-world use: children's bedtime stories, user personas, and English language learning exercises. We find that standard bias metrics have no significant correlation with the more realistic bias metrics. For example, selecting the least biased model based on the standard "trick tests" coincides with selecting the least biased model as measured in more realistic use no more than random chance. We suggest that there is not yet evidence to justify standard benchmarks as reliable proxies of real-world AI biases, and we encourage further development of evaluations grounded in particular contexts.

[128] arXiv:2405.13326 (replaced) [pdf, html, other]
Title: Mosaic-IT: Cost-Free Compositional Data Synthesis for Instruction Tuning
Ming Li, Pei Chen, Chenguang Wang, Hongyu Zhao, Yijun Liang, Yupeng Hou, Fuxiao Liu, Tianyi Zhou
Comments: ACL2025, Camera-ready
Subjects: Computation and Language (cs.CL)

Finetuning large language models with a variety of instruction-response pairs has enhanced their capability to understand and follow instructions. Current instruction tuning primarily relies on teacher models or human intervention to generate and refine the instructions and responses for training, which are costly, non-sustainable, and may lack diversity. In this paper, we introduce Mosaic Instruction Tuning (Mosaic-IT), a human/model-free compositional data synthesis method that can efficiently create rich and diverse augmentations from existing instruction tuning data to enhance the LLMs. Mosaic-IT randomly concatenates multiple instruction data into one and trains the model to produce the corresponding responses with predefined higher-level meta-instructions to strengthen its multi-step instruction-following and format-following skills. Our extensive evaluations demonstrate a superior performance and training efficiency of Mosaic-IT, which achieves consistent performance improvements over various benchmarks and an 80% reduction in training costs compared with original instruction tuning. Our codes and data are available at this https URL.

[129] arXiv:2406.02524 (replaced) [pdf, other]
Title: CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks
Maciej Besta, Lorenzo Paleari, Marcin Copik, Robert Gerstenberger, Ales Kubicek, Piotr Nyczyk, Patrick Iff, Eric Schreiber, Tanja Srindran, Tomasz Lehmann, Hubert Niewiadomski, Torsten Hoefler
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) are transforming a wide range of domains, yet verifying their outputs remains a significant challenge, especially for complex open-ended tasks such as consolidation, summarization, and knowledge extraction. To address this, we introduce CheckEmbed (CE): a simple, scalable, and accurate verification method. CE reduces each LLM answer to a single embedding vector using powerful modern embedding LLM models like SFR-Embedding-Mistral. Prior methods such as BERTScore and SelfCheckGPT relied on weaker encoders like BERT, forcing them to operate at token or sentence granularity. In contrast, CE performs fast, semantically rich comparisons directly at the whole-answer level, overcoming key limitations in both accuracy and scalability. We conduct a comprehensive design and time complexity analysis across 13 verification baselines, including classical text scorers (e.g., BLEU), stability-based methods (e.g., SelfCheckGPT), and generative evaluators (e.g., LLM-as-a-Judge), which highlights the effectiveness, efficiency, versatility, and simplicity of CE. Empirical results show that CE reliably detects hallucinations in both closed and open-ended tasks. We further present evidence that CE generalizes beyond text to other modalities such as vision, establishing it as a practical and versatile verification framework.

[130] arXiv:2406.03198 (replaced) [pdf, html, other]
Title: The Impossibility of Fair LLMs
Jacy Anthis, Kristian Lum, Michael Ekstrand, Avi Feller, Chenhao Tan
Comments: Published in ACL 2025
Subjects: Computation and Language (cs.CL); Human-Computer Interaction (cs.HC); Machine Learning (cs.LG); Applications (stat.AP); Machine Learning (stat.ML)

The rise of general-purpose artificial intelligence (AI) systems, particularly large language models (LLMs), has raised pressing moral questions about how to reduce bias and ensure fairness at scale. Researchers have documented a sort of "bias" in the significant correlations between demographics (e.g., race, gender) in LLM prompts and responses, but it remains unclear how LLM fairness could be evaluated with more rigorous definitions, such as group fairness or fair representations. We analyze a variety of technical fairness frameworks and find inherent challenges in each that make the development of a fair LLM intractable. We show that each framework either does not logically extend to the general-purpose AI context or is infeasible in practice, primarily due to the large amounts of unstructured training data and the many potential combinations of human populations, use cases, and sensitive attributes. These inherent challenges would persist for general-purpose AI, including LLMs, even if empirical challenges, such as limited participatory input and limited measurement methods, were overcome. Nonetheless, fairness will remain an important type of model evaluation, and there are still promising research directions, particularly the development of standards for the responsibility of LLM developers, context-specific evaluations, and methods of iterative, participatory, and AI-assisted evaluation that could scale fairness across the diverse contexts of modern human-AI interaction.

[131] arXiv:2406.05085 (replaced) [pdf, other]
Title: Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
Maciej Besta, Ales Kubicek, Robert Gerstenberger, Marcin Chrapek, Roman Niggli, Patrik Okanovic, Yi Zhu, Patrick Iff, Michal Podstawski, Lucas Weitzendorf, Mingyuan Chi, Joanna Gajda, Piotr Nyczyk, Jürgen Müller, Hubert Niewiadomski, Torsten Hoefler
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR)

Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving observation is that different attention heads learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, multi-aspect datasets, and real-world use cases to demonstrate MRAG's effectiveness. We show MRAG's design advantages over 18 RAG baselines, empirical improvements of up to 20% in retrieval success ratios, and benefits for downstream LLM generation. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarks.

[132] arXiv:2406.12336 (replaced) [pdf, html, other]
Title: Investigating Distributions of Telecom Adapted Sentence Embeddings for Document Retrieval
Sujoy Roychowdhury, Sumit Soman, Ranjani Hosakere Gireesha, Vansh Chhabra, Neeraj Gunda, Subhadip Bandyopadhyay, Sai Krishna Bala
Comments: Accepted for the Workshop On Next Gen Networks Through LLMs Action Models and Multi Agent Systems at IEEE International Conference on Communications (ICC) 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

A plethora of sentence embedding models makes it challenging to choose one, especially for technical domains rich with specialized vocabulary. In this work, we domain adapt embeddings using telecom data for question answering. We evaluate embeddings obtained from publicly available models and their domain-adapted variants, on both point retrieval accuracies, as well as their (95%) confidence intervals. We establish a systematic method to obtain thresholds for similarity scores for different embeddings. As expected, we observe that fine-tuning improves mean bootstrapped accuracies. We also observe that it results in tighter confidence intervals, which further improve when pre-training is preceded by fine-tuning. We introduce metrics which measure the distributional overlaps of top-$K$, correct and random document similarities with the question. Further, we show that these metrics are correlated with retrieval accuracy and similarity thresholds. Recent literature shows conflicting effects of isotropy on retrieval accuracies. Our experiments establish that the isotropy of embeddings (as measured by two independent state-of-the-art isotropy metric definitions) is poorly correlated with retrieval performance. We show that embeddings for domain-specific sentences have little overlap with those for domain-agnostic ones, and fine-tuning moves them further apart. Based on our results, we provide recommendations for use of our methodology and metrics by researchers and practitioners.

[133] arXiv:2406.14284 (replaced) [pdf, other]
Title: Leveraging LLMs for Bangla Grammar Error Correction:Error Categorization, Synthetic Data, and Model Evaluation
Pramit Bhattacharyya, Arnab Bhattacharya
Comments: Accepted at ACL Findings, 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) perform exceedingly well in Natural Language Understanding (NLU) tasks for many languages including English. However, despite being the fifth most-spoken language globally, Grammatical Error Correction (GEC) in Bangla remains underdeveloped. In this work, we investigate how LLMs can be leveraged for improving Bangla GEC. For that, we first do an extensive categorization of 12 error classes in Bangla, and take a survey of native Bangla speakers to collect real-world errors. We next devise a rule-based noise injection method to create grammatically incorrect sentences corresponding to correct ones. The Vaiyakarana dataset, thus created, consists of 5,67,422 sentences of which 2,27,119 are erroneous. This dataset is then used to instruction-tune LLMs for the task of GEC in Bangla. Evaluations show that instruction-tuning with \name improves GEC performance of LLMs by 3-7 percentage points as compared to the zero-shot setting, and makes them achieve human-like performance in grammatical error identification. Humans, though, remain superior in error correction.

[134] arXiv:2406.18966 (replaced) [pdf, html, other]
Title: DataGen: Unified Synthetic Dataset Generation via Large Language Models
Yue Huang, Siyuan Wu, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xiangliang Zhang, Jianfeng Gao, Chaowei Xiao, Lichao Sun
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents DataGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. DataGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, DataGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by DataGen, and each module within DataGen plays a critical role in this enhancement. Additionally, DataGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that DataGen effectively supports dynamic and evolving benchmarking and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.

[135] arXiv:2409.19257 (replaced) [pdf, html, other]
Title: Inducing lexicons of in-group language with socio-temporal context
Christine de Kock
Comments: Accepted to ACL 2025
Subjects: Computation and Language (cs.CL); Social and Information Networks (cs.SI)

In-group language is an important signifier of group dynamics. This paper proposes a novel method for inducing lexicons of in-group language, which incorporates its socio-temporal context. Existing methods for lexicon induction do not capture the evolving nature of in-group language, nor the social structure of the community. Using dynamic word and user embeddings trained on conversations from online anti-women communities, our approach outperforms prior methods for lexicon induction. We develop a test set for the task of lexicon induction and a new lexicon of manosphere language, validated by human experts, which quantifies the relevance of each term to a specific sub-community at a given point in time. Finally, we present novel insights on in-group language which illustrate the utility of this approach.

[136] arXiv:2410.01704 (replaced) [pdf, html, other]
Title: An Exploration of Self-Supervised Mutual Information Alignment for Multi-Task Settings
Soham V. Govande
Subjects: Computation and Language (cs.CL)

There is a growing need for pluralistic alignment methods that can steer language models towards individual attributes and preferences. One such method, Self-Supervised Alignment with Mutual Information (SAMI), uses conditional mutual information to encourage the connection between behavioral preferences and model responses. We conduct two experiments exploring SAMI in multi-task settings. First, we compare SAMI to Direct Preference Optimization (DPO) on a multi-task benchmark (MT-Bench), using a stronger model to generate training data for a weaker one across diverse categories (humanities, STEM, extraction, coding, math, reasoning, and roleplay). Our results indicate that one iteration of SAMI has a 57% win rate against DPO, with significant variation in performance between task categories. Second, we examine SAMI's impact on mathematical accuracy (GSM-8K) relative to supervised fine-tuning (SFT). While SAMI increases zero-shot performance by 1.1%, SFT is more effective with a 3.2% boost. However, SAMI shows interesting scaling trends. When given 10 attempts, SAMI improves accuracy by 3.9%, while SFT achieves a 10.1% increase. Combining SAMI with SFT yields an additional improvement of 1.3% in multi-attempt settings, though single-attempt accuracy remains unchanged.

[137] arXiv:2410.04055 (replaced) [pdf, html, other]
Title: Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks
Jiayi He, Hehai Lin, Qingyun Wang, Yi Fung, Heng Ji
Comments: Accepted by ACL 2025 Findings
Subjects: Computation and Language (cs.CL)

While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.

[138] arXiv:2410.12656 (replaced) [pdf, html, other]
Title: Evaluating Morphological Compositional Generalization in Large Language Models
Mete Ismayilzada, Defne Circi, Jonne Sälevä, Hale Sirin, Abdullatif Köksal, Bhuwan Dhingra, Antoine Bosselut, Duygu Ataman, Lonneke van der Plas
Comments: Accepted to NAACL 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large language models (LLMs) have demonstrated significant progress in various natural language generation and understanding tasks. However, their linguistic generalization capabilities remain questionable, raising doubts about whether these models learn language similarly to humans. While humans exhibit compositional generalization and linguistic creativity in language use, the extent to which LLMs replicate these abilities, particularly in morphology, is under-explored. In this work, we systematically investigate the morphological generalization abilities of LLMs through the lens of compositionality. We define morphemes as compositional primitives and design a novel suite of generative and discriminative tasks to assess morphological productivity and systematicity. Focusing on agglutinative languages such as Turkish and Finnish, we evaluate several state-of-the-art instruction-finetuned multilingual models, including GPT-4 and Gemini. Our analysis shows that LLMs struggle with morphological compositional generalization particularly when applied to novel word roots, with performance declining sharply as morphological complexity increases. While models can identify individual morphological combinations better than chance, their performance lacks systematicity, leading to significant accuracy gaps compared to humans.

[139] arXiv:2410.12872 (replaced) [pdf, html, other]
Title: Not All Options Are Created Equal: Textual Option Weighting for Token-Efficient LLM-Based Knowledge Tracing
JongWoo Kim, SeongYeub Chu, Bryan Wong, Mun Yi
Comments: 11 pages
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY); Machine Learning (cs.LG)

Large Language Models (LLMs) have recently emerged as promising tools for knowledge tracing (KT) due to their strong reasoning and generalization abilities. While recent LLM-based KT methods have proposed new prompt formats, they struggle to represent the full interaction histories of example learners within a single prompt during in-context learning (ICL), resulting in limited scalability and high computational cost under token constraints. In this work, we present \textit{LLM-based Option-weighted Knowledge Tracing (LOKT)}, a simple yet effective framework that encodes the interaction histories of example learners in context as \textit{textual categorical option weights (TCOW)}. TCOW are semantic labels (e.g., ``inadequate'') assigned to the options selected by learners when answering questions, enhancing the interpretability of LLMs. Experiments on multiple-choice datasets show that LOKT outperforms existing non-LLM and LLM-based KT models in both cold-start and warm-start settings. Moreover, LOKT enables scalable and cost-efficient inference, achieving strong performance even under strict token constraints. Our code is available at \href{this https URL}{this https URL\_model-3233}.

[140] arXiv:2410.14812 (replaced) [pdf, html, other]
Title: Isolated Causal Effects of Natural Language
Victoria Lin, Louis-Philippe Morency, Eli Ben-Michael
Comments: ICML 2025
Subjects: Computation and Language (cs.CL); Methodology (stat.ME)

As language technologies become widespread, it is important to understand how changes in language affect reader perceptions and behaviors. These relationships may be formalized as the isolated causal effect of some focal language-encoded intervention (e.g., factual inaccuracies) on an external outcome (e.g., readers' beliefs). In this paper, we introduce a formal estimation framework for isolated causal effects of language. We show that a core challenge of estimating isolated effects is the need to approximate all non-focal language outside of the intervention. Drawing on the principle of omitted variable bias, we provide measures for evaluating the quality of both non-focal language approximations and isolated effect estimates themselves. We find that poor approximation of non-focal language can lead to bias in the corresponding isolated effect estimates due to omission of relevant variables, and we show how to assess the sensitivity of effect estimates to such bias along the two key axes of fidelity and overlap. In experiments on semi-synthetic and real-world data, we validate the ability of our framework to correctly recover isolated effects and demonstrate the utility of our proposed measures.

[141] arXiv:2410.23743 (replaced) [pdf, html, other]
Title: What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
Ming Li, Yanhong Li, Tianyi Zhou
Comments: ACL2025 main, Camera-ready
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs) through the lens of the gradient. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popularity of training LLMs on reasoning paths such as chain-of-thoughts (CoT) and process rewards. In our study, fast thinking without CoT leads to larger gradients and larger differences of gradients across layers than slow thinking (Detailed CoT), indicating the learning stability brought by the latter. Additionally, we study whether the gradient patterns can reflect the correctness of responses when training different LLMs using slow vs. fast thinking paths. The results show that the gradients of slow thinking can distinguish correct and irrelevant reasoning paths. As a comparison, we conduct similar gradient analyses on non-reasoning knowledge learning tasks, on which, however, trivially increasing the response length does not lead to similar behaviors of slow thinking. Our study strengthens fundamental understandings of LLM training and sheds novel insights on its efficiency and stability, which pave the way towards building a generalizable System-2 agent. Our code, data, and gradient statistics can be found in: this https URL.

[142] arXiv:2411.11055 (replaced) [pdf, html, other]
Title: FastDraft: How to Train Your Draft
Ofir Zafrir, Igor Margulis, Dorin Shteyman, Shira Guskin, Guy Boudoukh
Comments: Accepted at ACL 2025
Subjects: Computation and Language (cs.CL)

Speculative Decoding has gained popularity as an effective technique for accelerating the auto-regressive inference process of Large Language Models. However, Speculative Decoding entirely relies on the availability of efficient draft models, which are often lacking for many existing language models due to a stringent constraint of vocabulary compatibility. In this work we introduce FastDraft, a novel and efficient approach for pre-training and aligning a draft model to any large language model by incorporating efficient pre-training, followed by fine-tuning over synthetic datasets generated by the target model. We demonstrate FastDraft by training two highly parameter efficient drafts for the popular Phi-3-mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft model with approximately 10 billion tokens on a single server with 8 Intel$^\circledR$ Gaudi$^\circledR$ 2 accelerators in under 24 hours. Our results show that the draft model achieves impressive results in key metrics of acceptance rate, block efficiency and up to 3x memory bound speed up when evaluated on code completion and up to 2x in summarization, text completion and instruction tasks. We validate our theoretical findings through benchmarking on the latest Intel$^\circledR$ Core$^{\tiny \text{TM}}$ Ultra, achieving a wall-clock time speedup of up to 2x, indicating a significant reduction in runtime. Due to its high quality, FastDraft unlocks large language models inference on AI-PC and other edge-devices.

[143] arXiv:2412.01271 (replaced) [pdf, html, other]
Title: MuLan: Adapting Multilingual Diffusion Models for Hundreds of Languages with Negligible Cost
Sen Xing, Muyan Zhong, Zeqiang Lai, Liangchen Li, Jiawen Liu, Yaohui Wang, Jifeng Dai, Wenhai Wang
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

In this work, we explore a cost-effective framework for multilingual image generation. We find that, unlike models tuned on high-quality images with multilingual annotations, leveraging text encoders pre-trained on widely available, noisy Internet image-text pairs significantly enhances data efficiency in text-to-image (T2I) generation across multiple this http URL on this insight, we introduce MuLan, Multi-Language adapter, a lightweight language adapter with fewer than 20M parameters, trained alongside a frozen text encoder and image diffusion model. Compared to previous multilingual T2I models, this framework offers: (1) Cost efficiency. Using readily accessible English data and off-the-shelf multilingual text encoders minimizes the training cost; (2) High performance. Achieving comparable generation capabilities in over 110 languages with CLIP similarity scores nearly matching those in English (39.57 for English vs. 39.61 for other languages); and (3) Broad applicability. Seamlessly integrating with compatible community tools like LoRA, LCM, ControlNet, and IP-Adapter, expanding its potential use cases.

[144] arXiv:2412.03782 (replaced) [pdf, html, other]
Title: The broader spectrum of in-context learning
Andrew Kyle Lampinen, Stephanie C. Y. Chan, Aaditya K. Singh, Murray Shanahan
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit -- such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization.

[145] arXiv:2412.04119 (replaced) [pdf, html, other]
Title: GRAF: Graph Retrieval Augmented by Facts for Romanian Legal Multi-Choice Question Answering
Cristian-George Crăciun, Răzvan-Alexandru Smădu, Dumitru-Clementin Cercel, Mihaela-Claudia Cercel
Comments: Accepted to ACL 2025 Findings
Subjects: Computation and Language (cs.CL)

Pre-trained Language Models (PLMs) have shown remarkable performances in recent years, setting a new paradigm for NLP research and industry. The legal domain has received some attention from the NLP community partly due to its textual nature. Some tasks from this domain are represented by question-answering (QA) tasks. This work explores the legal domain Multiple-Choice QA (MCQA) for a low-resource language. The contribution of this work is multi-fold. We first introduce JuRO, the first openly available Romanian legal MCQA dataset, comprising three different examinations and a number of 10,836 total questions. Along with this dataset, we introduce CROL, an organized corpus of laws that has a total of 93 distinct documents with their modifications from 763 time spans, that we leveraged in this work for Information Retrieval (IR) techniques. Moreover, we are the first to propose Law-RoG, a Knowledge Graph (KG) for the Romanian language, and this KG is derived from the aforementioned corpus. Lastly, we propose a novel approach for MCQA, Graph Retrieval Augmented by Facts (GRAF), which achieves competitive results with generally accepted SOTA methods and even exceeds them in most settings.

[146] arXiv:2501.07301 (replaced) [pdf, other]
Title: The Lessons of Developing Process Reward Models in Mathematical Reasoning
Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, Junyang Lin
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.

[147] arXiv:2502.00837 (replaced) [pdf, html, other]
Title: Explainability in Practice: A Survey of Explainable NLP Across Various Domains
Hadi Mohammadi, Ayoub Bagheri, Anastasia Giachanou, Daniel L. Oberski
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Natural Language Processing (NLP) has become a cornerstone in many critical sectors, including healthcare, finance, and customer relationship management. This is especially true with the development and use of advanced models such as GPT-based architectures and BERT, which are widely used in decision-making processes. However, the black-box nature of these advanced NLP models has created an urgent need for transparency and explainability. This review explores explainable NLP (XNLP) with a focus on its practical deployment and real-world applications, examining its implementation and the challenges faced in domain-specific contexts. The paper underscores the importance of explainability in NLP and provides a comprehensive perspective on how XNLP can be designed to meet the unique demands of various sectors, from healthcare's need for clear insights to finance's emphasis on fraud detection and risk assessment. Additionally, this review aims to bridge the knowledge gap in XNLP literature by offering a domain-specific exploration and discussing underrepresented areas such as real-world applicability, metric evaluation, and the role of human interaction in model assessment. The paper concludes by suggesting future research directions that could enhance the understanding and broader application of XNLP.

[148] arXiv:2502.11028 (replaced) [pdf, html, other]
Title: Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models
Prateek Chhikara
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) show remarkable proficiency in natural language tasks, yet their frequent overconfidence-misalignment between predicted confidence and true correctness-poses significant risks in critical decision-making applications. We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering (QA) datasets, systematically comparing standard free-generation settings against structured distractor-augmented prompts. Our evaluation reveals that explicitly incorporating distractors can substantially mitigate miscalibration, achieving relative accuracy improvements up to 460% and ECE reductions up to 90%. Despite general trends, we uncover nuanced findings: large RLHF-tuned models display inherent calibration strengths but can paradoxically suffer increased miscalibration on easier queries, whereas smaller models benefit disproportionately from distractor prompts but remain significantly miscalibrated. Through detailed analyses across question types, we identify persistent calibration failures, particularly in person-based queries. We conclude with concrete recommendations-targeted fine-tuning, structured prompting, and strategic model choice-to ensure reliable, trustworthy LLM deployments.

[149] arXiv:2502.12408 (replaced) [pdf, html, other]
Title: On the Robust Approximation of ASR Metrics
Abdul Waheed, Hanin Atwany, Rita Singh, Bhiksha Raj
Comments: ACL 2025 camera-ready
Subjects: Computation and Language (cs.CL)

Recent advances in speech foundation models are largely driven by scaling both model size and data, enabling them to perform a wide range of tasks, including speech recognition. Traditionally, ASR models are evaluated using metrics like Word Error Rate (WER) and Character Error Rate (CER), which depend on ground truth labels. As a result of limited labeled data from diverse domains and testing conditions, the true generalization capabilities of these models beyond standard benchmarks remain unclear. Moreover, labeling data is both costly and time-consuming. To address this, we propose a novel label-free approach for approximating ASR performance metrics, eliminating the need for ground truth labels. Our method utilizes multimodal embeddings in a unified space for speech and transcription representations, combined with a high-quality proxy model to compute proxy metrics. These features are used to train a regression model to predict key ASR metrics like Word Error Rate (WER) and Character Error Rate (CER). We experiment with over 40 models across 14 datasets representing both standard and in-the-wild testing conditions. Our results show that we approximate the metrics within a single-digit absolute difference across all experimental configurations, outperforming the most recent baseline by more than 50\%.

[150] arXiv:2502.12414 (replaced) [pdf, html, other]
Title: Lost in Transcription, Found in Distribution Shift: Demystifying Hallucination in Speech Foundation Models
Hanin Atwany, Abdul Waheed, Rita Singh, Monojit Choudhury, Bhiksha Raj
Comments: ACL2025 camera-ready
Subjects: Computation and Language (cs.CL)

Speech foundation models trained at a massive scale, both in terms of model and data size, result in robust systems capable of performing multiple speech tasks, including automatic speech recognition (ASR). These models transcend language and domain barriers, yet effectively measuring their performance remains a challenge. Traditional metrics like word error rate (WER) and character error rate (CER) are commonly used to evaluate ASR performance but often fail to reflect transcription quality in critical contexts, particularly when detecting fabricated outputs. This phenomenon, known as hallucination, is especially concerning in high-stakes domains such as healthcare, legal, and aviation, where errors can have severe consequences. In our work, we address this gap by investigating hallucination in ASR models. We examine how factors such as distribution shifts, model size, and model architecture influence the hallucination error rate (HER), a metric we introduce to quantify hallucinations. Our analysis of over 20 ASR models reveals \numinsights~key insights: (1) High WERs can mask low hallucination rates, while low WERs may conceal dangerous hallucinations. (2) Synthetic noise, both adversarial and common perturbations like white noise, pitch shift, and time stretching, increase HER. (3) Distribution shift correlates strongly with HER ($\alpha = 0.91$). Our findings highlight the importance of incorporating HER alongside traditional metrics like WER to better assess ASR model performance, particularly in high-stakes domains.

[151] arXiv:2502.12436 (replaced) [pdf, html, other]
Title: Should I Trust You? Detecting Deception in Negotiations using Counterfactual RL
Wichayaporn Wongkamjan, Yanze Wang, Feng Gu, Denis Peskoff, Jonathan K. Kummerfeld, Jonathan May, Jordan Lee Boyd-Graber
Comments: ACL Findings 2025
Subjects: Computation and Language (cs.CL)

An increasingly common socio-technical problem is people being taken in by offers that sound ``too good to be true'', where persuasion and trust shape decision-making. This paper investigates how \abr{ai} can help detect these deceptive scenarios. We analyze how humans strategically deceive each other in \textit{Diplomacy}, a board game that requires both natural language communication and strategic reasoning. This requires extracting logical forms of proposed agreements in player communications and computing the relative rewards of the proposal using agents' value functions. Combined with text-based features, this can improve our deception detection. Our method detects human deception with a high precision when compared to a Large Language Model approach that flags many true messages as deceptive. Future human-\abr{ai} interaction tools can build on our methods for deception detection by triggering \textit{friction} to give users a chance of interrogating suspicious proposals.

[152] arXiv:2502.13063 (replaced) [pdf, html, other]
Title: Cramming 1568 Tokens into a Single Vector and Back Again: Exploring the Limits of Embedding Space Capacity
Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, Mikhail Burtsev
Comments: ACL 2025 (main conference)
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

A range of recent works addresses the problem of compression of sequence of tokens into a shorter sequence of real-valued vectors to be used as inputs instead of token embeddings or key-value cache. These approaches are focused on reduction of the amount of compute in existing language models rather than minimization of number of bits needed to store text. Despite relying on powerful models as encoders, the maximum attainable lossless compression ratio is typically not higher than x10. This fact is highly intriguing because, in theory, the maximum information capacity of large real-valued vectors is far beyond the presented rates even for 16-bit precision and a modest vector size. In this work, we explore the limits of compression by replacing the encoder with a per-sample optimization procedure. We show that vectors with compression ratios up to x1500 exist, which highlights two orders of magnitude gap between existing and practically attainable solutions. Furthermore, we empirically show that the compression limits are determined not by the length of the input but by the amount of uncertainty to be reduced, namely, the cross-entropy loss on this sequence without any conditioning. The obtained limits highlight the substantial gap between the theoretical capacity of input embeddings and their practical utilization, suggesting significant room for optimization in model design.

[153] arXiv:2502.14425 (replaced) [pdf, html, other]
Title: A Survey on Data Contamination for Large Language Models
Yuxing Cheng, Yi Chang, Yuan Wu
Subjects: Computation and Language (cs.CL)

Recent advancements in Large Language Models (LLMs) have demonstrated significant progress in various areas, such as text generation and code synthesis. However, the reliability of performance evaluation has come under scrutiny due to data contamination-the unintended overlap between training and test datasets. This overlap has the potential to artificially inflate model performance, as LLMs are typically trained on extensive datasets scraped from publicly available sources. These datasets often inadvertently overlap with the benchmarks used for evaluation, leading to an overestimation of the models' true generalization capabilities. In this paper, we first examine the definition and impacts of data contamination. Secondly, we review methods for contamination-free evaluation, focusing on three strategies: data updating-based methods, data rewriting-based methods, and prevention-based methods. Specifically, we highlight dynamic benchmarks and LLM-driven evaluation methods. Finally, we categorize contamination detecting methods based on model information dependency: white-Box, gray-Box, and black-Box detection approaches. Our survey highlights the requirements for more rigorous evaluation protocols and proposes future directions for addressing data contamination challenges.

[154] arXiv:2502.15821 (replaced) [pdf, html, other]
Title: Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization
Keane Ong, Rui Mao, Deeksha Varshney, Erik Cambria, Gianmarco Mengaldo
Comments: Proceedings of the Association for Computational Linguistics Main Conference (ACL 2025)
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research.

[155] arXiv:2502.17394 (replaced) [pdf, html, other]
Title: SNaRe: Domain-aware Data Generation for Low-Resource Event Detection
Tanmay Parekh, Yuxuan Dong, Lucas Bandarkar, Artin Kim, I-Hung Hsu, Kai-Wei Chang, Nanyun Peng
Comments: Under review at ACL ARR May 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Event Detection (ED) -- the task of identifying event mentions from natural language text -- is critical for enabling reasoning in highly specialized domains such as biomedicine, law, and epidemiology. Data generation has proven to be effective in broadening its utility to wider applications without requiring expensive expert annotations. However, when existing generation approaches are applied to specialized domains, they struggle with label noise, where annotations are incorrect, and domain drift, characterized by a distributional mismatch between generated sentences and the target domain. To address these issues, we introduce SNaRe, a domain-aware synthetic data generation framework composed of three components: Scout, Narrator, and Refiner. Scout extracts triggers from unlabeled target domain data and curates a high-quality domain-specific trigger list using corpus-level statistics to mitigate domain drift. Narrator, conditioned on these triggers, generates high-quality domain-aligned sentences, and Refiner identifies additional event mentions, ensuring high annotation quality. Experimentation on three diverse domain ED datasets reveals how SNaRe outperforms the best baseline, achieving average F1 gains of 3-7% in the zero-shot/few-shot settings and 4-20% F1 improvement for multilingual generation. Analyzing the generated trigger hit rate and human evaluation substantiates SNaRe's stronger annotation quality and reduced domain drift.

[156] arXiv:2503.00038 (replaced) [pdf, html, other]
Title: From Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Yu Yan, Sheng Sun, Zenghao Duan, Teli Liu, Min Liu, Zhiyi Yin, Jiangyu Lei, Qi Li
Comments: arXiv admin note: substantial text overlap with arXiv:2412.12145
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Cryptography and Security (cs.CR)

Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.

[157] arXiv:2503.00847 (replaced) [pdf, html, other]
Title: Argument Summarization and its Evaluation in the Era of Large Language Models
Moritz Altemeyer, Steffen Eger, Johannes Daxenberger, Yanran Chen, Tim Altendorf, Philipp Cimiano, Benjamin Schiller
Subjects: Computation and Language (cs.CL)

Large Language Models (LLMs) have revolutionized various Natural Language Generation (NLG) tasks, including Argument Summarization (ArgSum), a key subfield of Argument Mining (AM). This paper investigates the integration of state-of-the-art LLMs into ArgSum, including for its evaluation. In particular, we propose a novel prompt-based evaluation scheme, and validate it through a novel human benchmark dataset. Our work makes three main contributions: (i) the integration of LLMs into existing ArgSum frameworks, (ii) the development of a new LLM-based ArgSum system, benchmarked against prior methods, and (iii) the introduction of an advanced LLM-based evaluation scheme. We demonstrate that the use of LLMs substantially improves both the generation and evaluation of argument summaries, achieving state-of-the-art results and advancing the field of ArgSum. We also show that among the four LLMs integrated in (i) and (ii), Qwen-3-32B, despite having the fewest parameters, performs best, even surpassing GPT-4o, while LLaMA-3.3-70B consistently underperforms.

[158] arXiv:2503.02197 (replaced) [pdf, other]
Title: ATLaS: Agent Tuning via Learning Critical Steps
Zhixun Chen, Ming Li, Yuxuan Huang, Yali Du, Meng Fang, Tianyi Zhou
Comments: ACL2025, Camera-ready
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Large Language Model (LLM) agents have demonstrated remarkable generalization capabilities across multi-domain tasks. Existing agent tuning approaches typically employ supervised finetuning on entire expert trajectories. However, behavior-cloning of full trajectories can introduce expert bias and weaken generalization to states not covered by the expert data. Additionally, critical steps, such as planning, complex reasoning for intermediate subtasks, and strategic decision-making, are essential to success in agent tasks, so learning these steps is the key to improving LLM agents. For more effective and efficient agent tuning, we propose ATLaS that identifies the critical steps in expert trajectories and finetunes LLMs solely on these steps with reduced costs. By steering the training's focus to a few critical steps, our method mitigates the risk of overfitting entire trajectories and promotes generalization across different environments and tasks. In extensive experiments, an LLM finetuned on only 30% critical steps selected by ATLaS outperforms the LLM finetuned on all steps and recent open-source LLM agents. ATLaS maintains and improves base LLM skills as generalist agents interacting with diverse environments.

[159] arXiv:2503.03417 (replaced) [pdf, other]
Title: When Claims Evolve: Evaluating and Enhancing the Robustness of Embedding Models Against Misinformation Edits
Jabez Magomere, Emanuele La Malfa, Manuel Tonneau, Ashkan Kazemi, Scott Hale
Comments: Accepted to ACL 2025 Findings
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Online misinformation remains a critical challenge, and fact-checkers increasingly rely on claim matching systems that use sentence embedding models to retrieve relevant fact-checks. However, as users interact with claims online, they often introduce edits, and it remains unclear whether current embedding models used in retrieval are robust to such edits. To investigate this, we introduce a perturbation framework that generates valid and natural claim variations, enabling us to assess the robustness of a wide-range of sentence embedding models in a multi-stage retrieval pipeline and evaluate the effectiveness of various mitigation approaches. Our evaluation reveals that standard embedding models exhibit notable performance drops on edited claims, while LLM-distilled embedding models offer improved robustness at a higher computational cost. Although a strong reranker helps to reduce the performance drop, it cannot fully compensate for first-stage retrieval gaps. To address these retrieval gaps, we evaluate train- and inference-time mitigation approaches, demonstrating that they can improve in-domain robustness by up to 17 percentage points and boost out-of-domain generalization by 10 percentage points. Overall, our findings provide practical improvements to claim-matching systems, enabling more reliable fact-checking of evolving misinformation. Code and data are available at this https URL.

[160] arXiv:2503.04647 (replaced) [pdf, other]
Title: Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment
Wen Yang, Junhong Wu, Chen Wang, Chengqing Zong, Jiajun Zhang
Comments: Camera ready version for ACL 2025 Findings
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that $\textit{captures}$ learned preferences from well-aligned English models by implicit rewards and $\textit{transfers}$ them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data. The code is available at this https URL

[161] arXiv:2503.21670 (replaced) [pdf, html, other]
Title: COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
Rajvee Sheth, Himanshu Beniwal, Mayank Singh
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

We introduce COMI-LINGUA, the largest manually annotated Hindi-English code-mixed dataset, comprising 125K+ high-quality instances across five core NLP tasks: Matrix Language Identification, Token-level Language Identification, POS Tagging, Named Entity Recognition (NER), and Machine Translation. Each instance is annotated by three bilingual annotators, yielding over 376K expert annotations with strong inter-annotator agreement (Fleiss' Kappa $\geq$ 0.81). The rigorously preprocessed and filtered dataset covers both Devanagari and Roman scripts and spans diverse domains, ensuring real-world linguistic coverage. Evaluation reveals that closed-source LLMs significantly outperform traditional tools and open-source models. Notably, one-shot prompting consistently boosts performance across tasks, especially in structure-sensitive predictions like POS and NER, highlighting the effectiveness of prompt-based adaptation in code-mixed, low-resource settings. COMI-LINGUA is publicly available at: this https URL.

[162] arXiv:2503.22353 (replaced) [pdf, html, other]
Title: Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Yubo Li, Yidi Miao, Xueying Ding, Ramayya Krishnan, Rema Padman
Comments: 8 pages, 5 figures
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: this https URL. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.

[163] arXiv:2503.24102 (replaced) [pdf, other]
Title: Is LLM the Silver Bullet to Low-Resource Languages Machine Translation?
Yewei Song, Lujun Li, Cedric Lothritz, Saad Ezzini, Lama Sleem, Niccolo Gentile, Radu State, Tegawendé F. Bissyandé, Jacques Klein
Subjects: Computation and Language (cs.CL)

Low-Resource Languages (LRLs) present significant challenges in natural language processing due to their limited linguistic resources and underrepresentation in standard datasets. While recent advances in Large Language Models (LLMs) and Neural Machine Translation have substantially improved translation capabilities for high-resource languages, performance disparities persist for LRLs, particularly impacting privacy-sensitive and resource-constrained scenarios. This paper systematically evaluates current LLMs in 200 languages using the FLORES-200 benchmark and demonstrates their limitations in LRL translation capability. We also explore alternative data sources, including news articles and bilingual dictionaries, and demonstrate how knowledge distillation from large pre-trained teacher models can significantly improve the performance of small LLMs on LRL translation tasks. For example, this approach increases EN->LB with the LLM-as-a-Judge score on the validation set from 0.36 to 0.89 for Llama-3.2-3B. Furthermore, we examine different fine-tuning configurations, providing practical insights on optimal data scale, training efficiency, and the preservation of generalization capabilities of models under study.

[164] arXiv:2504.07749 (replaced) [pdf, other]
Title: NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark
Vladislav Mikhailov, Tita Enstad, David Samuel, Hans Christian Farsethås, Andrey Kutuzov, Erik Velldal, Lilja Øvrelid
Comments: Accepted for Findings of the Association for Computational Linguistics: ACL 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokmål and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.

[165] arXiv:2504.18053 (replaced) [pdf, html, other]
Title: DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models
Jianyu Liu, Hangyu Guo, Ranjie Duan, Xingyuan Bu, Yancheng He, Shilong Li, Hui Huang, Jiaheng Liu, Yucheng Wang, Chenchen Jing, Xingwei Qu, Xiao Zhang, Yingshui Tan, Yanan Wu, Jihao Gu, Yangguang Li, Jianke Zhu
Comments: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at this https URL
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at this https URL.

[166] arXiv:2504.19044 (replaced) [pdf, html, other]
Title: Calibrating Translation Decoding with Quality Estimation on LLMs
Di Wu, Yibin Lei, Christof Monz
Subjects: Computation and Language (cs.CL)

Neural machine translation (NMT) systems typically employ maximum a posteriori (MAP) decoding to select the highest-scoring translation from the distribution mass. However, recent evidence highlights the inadequacy of MAP decoding, often resulting in low-quality or even pathological hypotheses -- the decoding objective is not aligned with real-world translation quality. This paper proposes calibrating hypothesis likelihoods with translation quality from a distribution view by directly optimizing their Pearson correlation -- thereby enhancing the effectiveness of translation decoding. With our method, translation on large language models (LLMs) improves substantially after limited training (2K instances per direction). This improvement is orthogonal to those achieved through supervised fine-tuning, leading to substantial gains across a broad range of metrics and human evaluations -- even when applied to top-performing translation-specialized LLMs fine-tuned on high-quality translation data, such as Tower, or when compared to recent preference optimization methods, like CPO. Moreover, the calibrated translation likelihood can directly serve as a strong proxy for translation quality, closely approximating or even surpassing some state-of-the-art translation quality estimation models, like CometKiwi. Lastly, our in-depth analysis demonstrates that calibration enhances the effectiveness of MAP decoding, thereby enabling greater efficiency in real-world deployment. The resulting state-of-the-art translation model, which covers 10 languages, along with the accompanying code and human evaluation data, has been released to the community: this https URL.

[167] arXiv:2505.05946 (replaced) [pdf, html, other]
Title: Full-Parameter Continual Pretraining of Gemma2: Insights into Fluency and Domain Knowledge
Vytenis Šliogeris, Povilas Daniušis, Artūras Nakvosas
Comments: 9 pages, 3 figures, 1 table
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at this https URL.

[168] arXiv:2505.07608 (replaced) [pdf, html, other]
Title: MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
LLM-Core Xiaomi: Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang, Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian, Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, Zihao Yue
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at this https URL.

[169] arXiv:2505.12268 (replaced) [pdf, html, other]
Title: $K$-MSHC: Unmasking Minimally Sufficient Head Circuits in Large Language Models with Experiments on Syntactic Classification Tasks
Pratim Chowdhary, Peter Chin, Deepernab Chakrabarty
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Understanding which neural components drive specific capabilities in mid-sized language models ($\leq$10B parameters) remains a key challenge. We introduce the $(\bm{K}, \epsilon)$-Minimum Sufficient Head Circuit ($K$-MSHC), a methodology to identify minimal sets of attention heads crucial for classification tasks as well as Search-K-MSHC, an efficient algorithm for discovering these circuits. Applying our Search-K-MSHC algorithm to Gemma-9B, we analyze three syntactic task families: grammar acceptability, arithmetic verification, and arithmetic word problems. Our findings reveal distinct task-specific head circuits, with grammar tasks predominantly utilizing early layers, word problems showing pronounced activity in both shallow and deep regions, and arithmetic verification demonstrating a more distributed pattern across the network. We discover non-linear circuit overlap patterns, where different task pairs share computational components at varying levels of importance. While grammar and arithmetic share many "weak" heads, arithmetic and word problems share more consistently critical "strong" heads. Importantly, we find that each task maintains dedicated "super-heads" with minimal cross-task overlap, suggesting that syntactic and numerical competencies emerge from specialized yet partially reusable head circuits.

[170] arXiv:2505.14971 (replaced) [pdf, html, other]
Title: DECASTE: Unveiling Caste Stereotypes in Large Language Models through Multi-Dimensional Bias Analysis
Prashanth Vijayaraghavan, Soroush Vosoughi, Lamogha Chiazor, Raya Horesh, Rogerio Abreu de Paula, Ehsan Degan, Vandana Mukherjee
Comments: 7 (content pages) + 2 (reference pages) + 5 (Appendix pages), 5 figures, 6 Tables, IJCAI 2025
Subjects: Computation and Language (cs.CL); Computers and Society (cs.CY)

Recent advancements in large language models (LLMs) have revolutionized natural language processing (NLP) and expanded their applications across diverse domains. However, despite their impressive capabilities, LLMs have been shown to reflect and perpetuate harmful societal biases, including those based on ethnicity, gender, and religion. A critical and underexplored issue is the reinforcement of caste-based biases, particularly towards India's marginalized caste groups such as Dalits and Shudras. In this paper, we address this gap by proposing DECASTE, a novel, multi-dimensional framework designed to detect and assess both implicit and explicit caste biases in LLMs. Our approach evaluates caste fairness across four dimensions: socio-cultural, economic, educational, and political, using a range of customized prompting strategies. By benchmarking several state-of-the-art LLMs, we reveal that these models systematically reinforce caste biases, with significant disparities observed in the treatment of oppressed versus dominant caste groups. For example, bias scores are notably elevated when comparing Dalits and Shudras with dominant caste groups, reflecting societal prejudices that persist in model outputs. These results expose the subtle yet pervasive caste biases in LLMs and emphasize the need for more comprehensive and inclusive bias evaluation methodologies that assess the potential risks of deploying such models in real-world contexts.

[171] arXiv:2505.16142 (replaced) [pdf, html, other]
Title: Distilling the Implicit Multi-Branch Structure in LLMs' Reasoning via Reinforcement Learning
Shicheng Xu, Liang Pang, Yunchang Zhu, Jia Gu, Zihao Wei, Jingcheng Deng, Feiyang Pan, Huawei Shen, Xueqi Cheng
Comments: 15 pages
Subjects: Computation and Language (cs.CL)

Distilling reasoning paths from teacher to student models via supervised fine-tuning (SFT) provides a shortcut for improving the reasoning ability of smaller Large Language Models (LLMs). However, the reasoning paths generated by teacher models often reflect only surface-level traces of their underlying authentic reasoning. Insights from cognitive neuroscience suggest that authentic reasoning involves a complex interweaving between meta-reasoning (which selects appropriate sub-problems from multiple candidates) and solving (which addresses the sub-problem). This implies authentic reasoning has an implicit multi-branch structure. Supervised fine-tuning collapses this rich structure into a flat sequence of token prediction in the teacher's reasoning path, preventing effective distillation of this structure to students. To address this limitation, we propose RLKD, a reinforcement learning (RL)-based distillation framework guided by a novel Generative Structure Reward Model (GSRM). Our GSRM converts reasoning paths into multiple meta-reasoning-solving steps and computes rewards to measure structural alignment between student and teacher reasoning. RLKD combines this reward with RL, enabling student LLMs to internalize the teacher's implicit multi-branch reasoning structure rather than merely mimicking fixed output paths. Experiments show RLKD surpasses standard SFT-RL pipelines even when trained on 0.1% of data under an RL-only regime, unlocking greater student reasoning potential than SFT-based distillation.

[172] arXiv:2505.17135 (replaced) [pdf, html, other]
Title: When can isotropy help adapt LLMs' next word prediction to numerical domains?
Rashed Shelim, Shengzhe Xu, Walid Saad, Naren Ramakrishnan
Subjects: Computation and Language (cs.CL)

Recent studies have shown that vector representations of contextual embeddings learned by pre-trained large language models (LLMs) are effective in various downstream tasks in numerical domains. Despite their significant benefits, the tendency of LLMs to hallucinate in such domains can have severe consequences in applications such as energy, nature, finance, healthcare, retail and transportation, among others. To guarantee prediction reliability and accuracy in numerical domains, it is necessary to open the black-box and provide performance guarantees through explanation. However, there is little theoretical understanding of when pre-trained language models help solve numeric downstream tasks. This paper seeks to bridge this gap by understanding when the next-word prediction capability of LLMs can be adapted to numerical domains through a novel analysis based on the concept of isotropy in the contextual embedding space. Specifically, we consider a log-linear model for LLMs in which numeric data can be predicted from its context through a network with softmax in the output layer of LLMs (i.e., language model head in self-attention). We demonstrate that, in order to achieve state-of-the-art performance in numerical domains, the hidden representations of the LLM embeddings must possess a structure that accounts for the shift-invariance of the softmax function. By formulating a gradient structure of self-attention in pre-trained models, we show how the isotropic property of LLM embeddings in contextual embedding space preserves the underlying structure of representations, thereby resolving the shift-invariance problem and providing a performance guarantee. Experiments show that different characteristics of numeric data and model architecture could have different impacts on isotropy.

[173] arXiv:2505.17387 (replaced) [pdf, html, other]
Title: WiNGPT-3.0 Technical Report
Boqin Zhuang, Chenxiao Song, Huitong Lu, Jiacheng Qiao, Mingqian Liu, Mingxing Yu, Ping Hong, Rui Li, Xiaoxia Song, Xiangjun Xu, Xu Chen, Yaoyao Ma, Yujie Gao
Subjects: Computation and Language (cs.CL)

Current Large Language Models (LLMs) exhibit significant limitations, notably in structured, interpretable, and verifiable medical reasoning, alongside practical deployment challenges related to computational resources and data privacy. This report focused on the development of WiNGPT-3.0, the 32-billion parameter LLMs, engineered with the objective of enhancing its capacity for medical reasoning and exploring its potential for effective integration within healthcare IT infrastructures. The broader aim is to advance towards clinically applicable models. The approach involved a multi-stage training pipeline tailored for general, medical, and clinical reasoning. This pipeline incorporated supervised fine-tuning (SFT) and reinforcement learning (RL), leveraging curated Long Chain-of-Thought (CoT) datasets, auxiliary reward models, and an evidence-based diagnostic chain simulation. WiNGPT-3.0 demonstrated strong performance: specific model variants achieved scores of 66.6 on MedCalc and 87.1 on MedQA-USMLE. Furthermore, targeted training improved performance on a clinical reasoning task from a baseline score of 58.1 to 62.5. These findings suggest that reinforcement learning, even when applied with a limited dataset of only a few thousand examples, can enhance medical reasoning accuracy. Crucially, this demonstration of RL's efficacy with limited data and computation paves the way for more trustworthy and practically deployable LLMs within clinical workflows and health information infrastructures.

[174] arXiv:2505.18247 (replaced) [pdf, html, other]
Title: MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Kunal Sawarkar, Shivam R. Solanki, Abhilasha Mangal
Comments: Preprint. Paper Submitted for NeurIPS 2025- The Thirty-Ninth Annual Conference on Neural Information Processing Systems
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Information Retrieval (cs.IR); Machine Learning (cs.LG)

Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.

[175] arXiv:2505.18614 (replaced) [pdf, html, other]
Title: MAVL: A Multilingual Audio-Video Lyrics Dataset for Animated Song Translation
Woohyun Cho, Youngmin Kim, Sunghyun Lee, Youngjae Yu
Comments: 28 pages, 8 figures, our codes and datasets are available at this https URL
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG); Multimedia (cs.MM); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Lyrics translation requires both accurate semantic transfer and preservation of musical rhythm, syllabic structure, and poetic style. In animated musicals, the challenge intensifies due to alignment with visual and auditory cues. We introduce Multilingual Audio-Video Lyrics Benchmark for Animated Song Translation (MAVL), the first multilingual, multimodal benchmark for singable lyrics translation. By integrating text, audio, and video, MAVL enables richer and more expressive translations than text-only approaches. Building on this, we propose Syllable-Constrained Audio-Video LLM with Chain-of-Thought SylAVL-CoT, which leverages audio-video cues and enforces syllabic constraints to produce natural-sounding lyrics. Experimental results demonstrate that SylAVL-CoT significantly outperforms text-based models in singability and contextual accuracy, emphasizing the value of multimodal, multilingual approaches for lyrics translation.

[176] arXiv:2505.19426 (replaced) [pdf, html, other]
Title: The Role of Diversity in In-Context Learning for Large Language Models
Wenyang Xiao, Haoyu Zhao, Lingxiao Huang
Comments: 30 pages
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

In-context learning (ICL) is a crucial capability of current large language models (LLMs), where the selection of examples plays a key role in performance. While most existing approaches focus on selecting the most similar examples to the query, the impact of diversity in example selection remains underexplored. We systematically investigate the role of diversity in in-context example selection through experiments across a range of tasks, from sentiment classification to more challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and Mistral-v0.3 families of models show that diversity-aware selection methods improve performance, particularly on complex tasks like math and code, and enhance robustness to out-of-distribution queries. To support these findings, we introduce a theoretical framework that explains the benefits of incorporating diversity in in-context example selection.

[177] arXiv:2505.19430 (replaced) [pdf, html, other]
Title: Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation
Keane Ong, Rui Mao, Deeksha Varshney, Paul Pu Liang, Erik Cambria, Gianmarco Mengaldo
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Counterfactual reasoning typically involves considering alternatives to actual events. While often applied to understand past events, a distinct form-forward counterfactual reasoning-focuses on anticipating plausible future developments. This type of reasoning is invaluable in dynamic financial markets, where anticipating market developments can powerfully unveil potential risks and opportunities for stakeholders, guiding their decision-making. However, performing this at scale is challenging due to the cognitive demands involved, underscoring the need for automated solutions. Large Language Models (LLMs) offer promise, but remain unexplored for this application. To address this gap, we introduce a novel benchmark, Fin-Force-FINancial FORward Counterfactual Evaluation. By curating financial news headlines and providing structured evaluation, Fin-Force supports LLM based forward counterfactual generation. This paves the way for scalable and automated solutions for exploring and anticipating future market developments, thereby providing structured insights for decision-making. Through experiments on Fin-Force, we evaluate state-of-the-art LLMs and counterfactual generation methods, analyzing their limitations and proposing insights for future research.

[178] arXiv:2505.20277 (replaced) [pdf, html, other]
Title: OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Haonan Zhang, Run Luo, Xiong Liu, Yuchuan Wu, Ting-En Lin, Pengpeng Zeng, Qiang Qu, Feiteng Fang, Min Yang, Lianli Gao, Jingkuan Song, Fei Huang, Yongbin Li
Comments: 14 pages, 6 figures
Subjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at this https URL.

[179] arXiv:2505.20354 (replaced) [pdf, html, other]
Title: Rethinking Text-based Protein Understanding: Retrieval or LLM?
Juntong Wu, Zijing Liu, He Cao, Hao Li, Bin Feng, Zishan Shu, Ke Yu, Li Yuan, Yu Li
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at this https URL.

[180] arXiv:2505.20445 (replaced) [pdf, html, other]
Title: In-context Language Learning for Endangered Languages in Speech Recognition
Zhaolin Li, Jan Niehues
Comments: Interspeech2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.

[181] arXiv:2505.20779 (replaced) [pdf, html, other]
Title: CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature
Noy Sternlicht, Tom Hope
Comments: Project page: this https URL
Subjects: Computation and Language (cs.CL)

A hallmark of human innovation is the process of recombination -- creating original ideas by integrating elements of existing mechanisms and concepts. In this work, we automatically mine the scientific literature and build CHIMERA: a large-scale knowledge base (KB) of recombination examples. CHIMERA can be used to empirically explore at scale how scientists recombine concepts and take inspiration from different areas, or to train supervised machine learning models that learn to predict new creative cross-domain directions. To build this KB, we present a novel information extraction task of extracting recombination from scientific paper abstracts, collect a high-quality corpus of hundreds of manually annotated abstracts, and use it to train an LLM-based extraction model. The model is applied to a large corpus of papers in the AI domain, yielding a KB of over 28K recombination examples. We analyze CHIMERA to explore the properties of recombination in different subareas of AI. Finally, we train a scientific hypothesis generation model using the KB, which predicts new recombination directions that real-world researchers find inspiring. Our data and code are available at this https URL

[182] arXiv:2505.22107 (replaced) [pdf, html, other]
Title: Curse of High Dimensionality Issue in Transformer for Long-context Modeling
Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, Mingkui Tan
Comments: Accepted at ICML 2025
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive this http URL is available at this https URL.

[183] arXiv:2505.22184 (replaced) [pdf, html, other]
Title: Breaking the Cloak! Unveiling Chinese Cloaked Toxicity with Homophone Graph and Toxic Lexicon
Xuchen Ma, Jianxiang Yu, Wenming Shao, Bo Pang, Xiang Li
Comments: 25 pages, 5 figures, 9 tables
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Social media platforms have experienced a significant rise in toxic content, including abusive language and discriminatory remarks, presenting growing challenges for content moderation. Some users evade censorship by deliberately disguising toxic words through homophonic cloak, which necessitates the task of unveiling cloaked toxicity. Existing methods are mostly designed for English texts, while Chinese cloaked toxicity unveiling has not been solved yet. To tackle the issue, we propose C$^2$TU, a novel training-free and prompt-free method for Chinese cloaked toxic content unveiling. It first employs substring matching to identify candidate toxic words based on Chinese homo-graph and toxic lexicon. Then it filters those candidates that are non-toxic and corrects cloaks to be their corresponding toxicities. Specifically, we develop two model variants for filtering, which are based on BERT and LLMs, respectively. For LLMs, we address the auto-regressive limitation in computing word occurrence probability and utilize the full semantic contexts of a text sequence to reveal cloaked toxic words. Extensive experiments demonstrate that C$^2$TU can achieve superior performance on two Chinese toxic datasets. In particular, our method outperforms the best competitor by up to 71% on the F1 score and 35% on accuracy, respectively. Our code and data are available at this https URL.

[184] arXiv:2505.23029 (replaced) [pdf, html, other]
Title: Uncovering Visual-Semantic Psycholinguistic Properties from the Distributional Structure of Text Embedding Space
Si Wu, Sebastian Bruch
Comments: The camera-ready version for ACL 2025 in Vienna
Subjects: Computation and Language (cs.CL)

Imageability (potential of text to evoke a mental image) and concreteness (perceptibility of text) are two psycholinguistic properties that link visual and semantic spaces. It is little surprise that computational methods that estimate them do so using parallel visual and semantic spaces, such as collections of image-caption pairs or multi-modal models. In this paper, we work on the supposition that text itself in an image-caption dataset offers sufficient signals to accurately estimate these properties. We hypothesize, in particular, that the peakedness of the neighborhood of a word in the semantic embedding space reflects its degree of imageability and concreteness. We then propose an unsupervised, distribution-free measure, which we call Neighborhood Stability Measure (NSM), that quantifies the sharpness of peaks. Extensive experiments show that NSM correlates more strongly with ground-truth ratings than existing unsupervised methods, and is a strong predictor of these properties for classification. Our code and data are available on GitHub (this https URL).

[185] arXiv:2505.23224 (replaced) [pdf, html, other]
Title: MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration
Zhitao He, Sandeep Polisetty, Zhiyuan Fan, Yuchen Huang, Shujin Wu, Yi R. Fung
Comments: 18 pages, ACL 2025
Subjects: Computation and Language (cs.CL)

In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.

[186] arXiv:2505.23404 (replaced) [pdf, other]
Title: Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models
Mingyu Yu, Wei Wang, Yanjie Wei, Sujuan Qin
Subjects: Computation and Language (cs.CL)

Adversarial attacks on Large Language Models (LLMs) via jailbreaking techniques-methods that circumvent their built-in safety and ethical constraints-have emerged as a critical challenge in AI security. These attacks compromise the reliability of LLMs by exploiting inherent weaknesses in their comprehension capabilities. This paper investigates the efficacy of jailbreaking strategies that are specifically adapted to the diverse levels of understanding exhibited by different LLMs. We propose the Adaptive Jailbreaking Strategies Based on the Semantic Understanding Capabilities of Large Language Models, a novel framework that classifies LLMs into Type I and Type II categories according to their semantic comprehension abilities. For each category, we design tailored jailbreaking strategies aimed at leveraging their vulnerabilities to facilitate successful attacks. Extensive experiments conducted on multiple LLMs demonstrate that our adaptive strategy markedly improves the success rate of jailbreaking. Notably, our approach achieves an exceptional 98.9% success rate in jailbreaking GPT-4o(29 May 2025 release)

[187] arXiv:2505.23827 (replaced) [pdf, other]
Title: ValueSim: Generating Backstories to Model Individual Value Systems
Bangde Du, Ziyi Ye, Zhijing Wu, Jankowska Monika, Shuqi Zhu, Qingyao Ai, Yujia Zhou, Yiqun Liu
Comments: 8 pages main paper + 13 pages appendix, 3 figures, 2 tables
Subjects: Computation and Language (cs.CL)

As Large Language Models (LLMs) continue to exhibit increasingly human-like capabilities, aligning them with human values has become critically important. Contemporary advanced techniques, such as prompt learning and reinforcement learning, are being deployed to better align LLMs with human values. However, while these approaches address broad ethical considerations and helpfulness, they rarely focus on simulating individualized human value systems. To address this gap, we present ValueSim, a framework that simulates individual values through the generation of personal backstories reflecting past experiences and demographic information. ValueSim converts structured individual data into narrative backstories and employs a multi-module architecture inspired by the Cognitive-Affective Personality System to simulate individual values based on these narratives. Testing ValueSim on a self-constructed benchmark derived from the World Values Survey demonstrates an improvement in top-1 accuracy by over 10% compared to retrieval-augmented generation methods. Further analysis reveals that performance enhances as additional user interaction history becomes available, indicating the model's ability to refine its persona simulation capabilities over time.

[188] arXiv:2505.24347 (replaced) [pdf, html, other]
Title: Fewer Hallucinations, More Verification: A Three-Stage LLM-Based Framework for ASR Error Correction
Yangui Fang, Baixu Cheng, Jing Peng, Xu Li, Yu Xi, Chengwei Zhang, Guohui Zhong
Subjects: Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)

Automatic Speech Recognition (ASR) error correction aims to correct recognition errors while preserving accurate text. Although traditional approaches demonstrate moderate effectiveness, LLMs offer a paradigm that eliminates the need for training and labeled data. However, directly using LLMs will encounter hallucinations problem, which may lead to the modification of the correct text. To address this problem, we propose the Reliable LLM Correction Framework (RLLM-CF), which consists of three stages: (1) error pre-detection, (2) chain-of-thought sub-tasks iterative correction, and (3) reasoning process verification. The advantage of our method is that it does not require additional information or fine-tuning of the model, and ensures the correctness of the LLM correction under multi-pass programming. Experiments on AISHELL-1, AISHELL-2, and Librispeech show that the GPT-4o model enhanced by our framework achieves 21%, 11%, 9%, and 11.4% relative reductions in CER/WER.

[189] arXiv:2506.00253 (replaced) [pdf, html, other]
Title: Aligned but Blind: Alignment Increases Implicit Bias by Reducing Awareness of Race
Lihao Sun, Chengzhi Mao, Valentin Hofmann, Xuechunzi Bai
Comments: Accepted to ACL 2025 (Main)
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY)

Although value-aligned language models (LMs) appear unbiased in explicit bias evaluations, they often exhibit stereotypes in implicit word association tasks, raising concerns about their fair usage. We investigate the mechanisms behind this discrepancy and find that alignment surprisingly amplifies implicit bias in model outputs. Specifically, we show that aligned LMs, unlike their unaligned counterparts, overlook racial concepts in early internal representations when the context is ambiguous. Not representing race likely fails to activate safety guardrails, leading to unintended biases. Inspired by this insight, we propose a new bias mitigation strategy that works by incentivizing the representation of racial concepts in the early model layers. In contrast to conventional mitigation methods of machine unlearning, our interventions find that steering the model to be more aware of racial concepts effectively mitigates implicit bias. Similar to race blindness in humans, ignoring racial nuances can inadvertently perpetuate subtle biases in LMs.

[190] arXiv:2506.00975 (replaced) [pdf, html, other]
Title: NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction
Qichao Wang, Ziqiao Meng, Wenqian Cui, Yifei Zhang, Pengcheng Wu, Bingzhe Wu, Irwin King, Liang Chen, Peilin Zhao
Comments: Accepted by ICML 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Sound (cs.SD); Audio and Speech Processing (eess.AS)

Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.

[191] arXiv:2506.01807 (replaced) [pdf, html, other]
Title: Propaganda and Information Dissemination in the Russo-Ukrainian War: Natural Language Processing of Russian and Western Twitter Narratives
Zaur Gouliev
Comments: 7 pages; 6 figures
Subjects: Computation and Language (cs.CL)

The conflict in Ukraine has been not only characterised by military engagement but also by a significant information war, with social media platforms like X, formerly known as Twitter playing an important role in shaping public perception. This article provides an analysis of tweets from propaganda accounts and trusted accounts collected from the onset of the war, February 2022 until the middle of May 2022 with n=40,000 total tweets. We utilise natural language processing and machine learning algorithms to assess the sentiment and identify key themes, topics and narratives across the dataset with human-in-the-loop (HITL) analysis throughout. Our findings indicate distinct strategies in how information is created, spread, and targeted at different audiences by both sides. Propaganda accounts frequently employ emotionally charged language and disinformation to evoke fear and distrust, whereas other accounts, primarily Western tend to focus on factual reporting and humanitarian aspects of the conflict. Clustering analysis reveals groups of accounts with similar behaviours, which we suspect indicates the presence of coordinated efforts. This research attempts to contribute to our understanding of the dynamics of information warfare and offers techniques for future studies on social media influence in military conflicts.

[192] arXiv:2506.02672 (replaced) [pdf, other]
Title: EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
Shihan Dou, Ming Zhang, Chenhao Huang, Jiayi Chen, Feng Chen, Shichun Liu, Yan Liu, Chenxiao Liu, Cheng Zhong, Zongzhang Zhang, Tao Gui, Chao Xin, Wei Chengzhi, Lin Yan, Qi Zhang, Yonghui Wu, Xuanjing Huang
Comments: 47 pages, 24 figures
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.

[193] arXiv:2506.02701 (replaced) [pdf, html, other]
Title: On Entity Identification in Language Models
Masaki Sakata, Benjamin Heinzerling, Sho Yokoi, Takumi Ito, Kentaro Inui
Comments: ACL 2025 Findings; 26 pages, 13 figures, 9 tables
Subjects: Computation and Language (cs.CL)

We analyze the extent to which internal representations of language models (LMs) identify and distinguish mentions of named entities, focusing on the many-to-many correspondence between entities and their mentions. We first formulate two problems of entity mentions -- ambiguity and variability -- and propose a framework analogous to clustering quality metrics. Specifically, we quantify through cluster analysis of LM internal representations the extent to which mentions of the same entity cluster together and mentions of different entities remain separated. Our experiments examine five Transformer-based autoregressive models, showing that they effectively identify and distinguish entities with metrics analogous to precision and recall ranging from 0.66 to 0.9. Further analysis reveals that entity-related information is compactly represented in a low-dimensional linear subspace at early LM layers. Additionally, we clarify how the characteristics of entity representations influence word prediction performance. These findings are interpreted through the lens of isomorphism between LM representations and entity-centric knowledge structures in the real world, providing insights into how LMs internally organize and use entity information.

[194] arXiv:2506.03295 (replaced) [pdf, html, other]
Title: Unleashing the Reasoning Potential of Pre-trained LLMs by Critique Fine-Tuning on One Problem
Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, Wenhu Chen
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)

We have witnessed that strong LLMs like Qwen-Math, MiMo, and Phi-4 possess immense reasoning potential inherited from the pre-training stage. With reinforcement learning (RL), these models can improve dramatically on reasoning tasks. Recent studies have shown that even RL on a single problem can unleash these models' reasoning capabilities. However, RL is not only expensive but also unstable. Even one-shot RL requires hundreds of GPU hours. This raises a critical question: Is there a more efficient way to unleash the reasoning potential of these powerful base LLMs? In this work, we demonstrate that Critique Fine-Tuning (CFT) on only one problem can effectively unleash the reasoning potential of LLMs. Our method constructs critique data by collecting diverse model-generated solutions to a single problem and using teacher LLMs to provide detailed critiques. We fine-tune Qwen and Llama family models, ranging from 1.5B to 14B parameters, on the CFT data and observe significant performance gains across diverse reasoning tasks. For example, with just 5 GPU hours of training, Qwen-Math-7B-CFT show an average improvement of 15% on six math benchmarks and 16% on three logic reasoning benchmarks. These results are comparable to or even surpass the results from RL with 20x less compute. Ablation studies reveal the robustness of one-shot CFT across different prompt problems. These results highlight one-shot CFT as a simple, general, and compute-efficient approach to unleashing the reasoning capabilities of modern LLMs.

[195] arXiv:2506.03490 (replaced) [pdf, html, other]
Title: Beyond Memorization: A Rigorous Evaluation Framework for Medical Knowledge Editing
Shigeng Chen, Linhao Luo, Zhangchi Qiu, Yanan Cao, Carl Yang, Shirui Pan
Comments: Under Review
Subjects: Computation and Language (cs.CL)

Recently, knowledge editing (KE) has emerged as a promising approach to update specific facts in Large Language Models (LLMs) without the need for full retraining. Despite the effectiveness in general-domain benchmarks, their applicability to complex medical domain remains largely unexplored. Medical knowledge editing is particularly challenging, as it requires LLMs to internalize the knowledge and generalize to unseen scenarios for effective and interpretable decision-making. In this work, we propose a novel framework called MedEditBench to rigorously evaluate the effectiveness of existing KE methods in the medical domain. In MedEditBench, we introduce a new medical knowledge editing benchmark as well as three different knowledge editing paradigms, which are designed to assess the impact of different knowledge sources for editing. Our findings indicate that current KE methods result in only superficial memorization of the injected information, failing to generalize to new scenarios. To overcome this limitation, we present Self-Generated Rationale Editing (SGR-Edit), which utilizes model-derived rationales as the target knowledge for editing, thereby uncovering the underlying reasoning process and demonstrating significant improvements over existing KE approaches. Additionally, we offer deeper insights into medical knowledge editing, including the localization of medical knowledge in LLMs and the impact of sequential editing on evolving knowledge. This could provide practical guidance for implementing KE methods in real-world medical applications.

[196] arXiv:2506.03519 (replaced) [pdf, html, other]
Title: An Efficient Task-Oriented Dialogue Policy: Evolutionary Reinforcement Learning Injected by Elite Individuals
Yangyang Zhao, Ben Niu, Libo Qin, Shihan Wang
Comments: Accepted to ACL 2025 (Main Track)
Subjects: Computation and Language (cs.CL)

Deep Reinforcement Learning (DRL) is widely used in task-oriented dialogue systems to optimize dialogue policy, but it struggles to balance exploration and exploitation due to the high dimensionality of state and action spaces. This challenge often results in local optima or poor convergence. Evolutionary Algorithms (EAs) have been proven to effectively explore the solution space of neural networks by maintaining population diversity. Inspired by this, we innovatively combine the global search capabilities of EA with the local optimization of DRL to achieve a balance between exploration and exploitation. Nevertheless, the inherent flexibility of natural language in dialogue tasks complicates this direct integration, leading to prolonged evolutionary times. Thus, we further propose an elite individual injection mechanism to enhance EA's search efficiency by adaptively introducing best-performing individuals into the population. Experiments across four datasets show that our approach significantly improves the balance between exploration and exploitation, boosting performance. Moreover, the effectiveness of the EII mechanism in reducing exploration time has been demonstrated, achieving an efficient integration of EA and DRL on task-oriented dialogue policy tasks.

[197] arXiv:2506.03524 (replaced) [pdf, html, other]
Title: Seed-Coder: Let the Code Model Curate Data for Itself
ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai, Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song, Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, Yonghui Wu
Subjects: Computation and Language (cs.CL); Software Engineering (cs.SE)

Code data in large language model (LLM) pretraining is recognized crucial not only for code-related tasks but also for enhancing general intelligence of LLMs. Current open-source LLMs often heavily rely on human effort to produce their code pretraining data, such as employing hand-crafted filtering rules tailored to individual programming languages, or using human-annotated data to train quality filters. However, these approaches are inherently limited in scalability, prone to subjective biases, and costly to extend and maintain across diverse programming languages. To address these challenges, we introduce Seed-Coder, a series of open-source LLMs comprising base, instruct and reasoning models of 8B size, minimizing human involvement in data construction. Our code pretraining data is produced by a model-centric data pipeline, which predominantly leverages LLMs for scoring and filtering code data. The instruct model is further trained via supervised fine-tuning and preference optimization, and the reasoning model leverages Long-Chain-of-Thought (LongCoT) reinforcement learning to improve multi-step code reasoning. Seed-Coder achieves state-of-the-art results among open-source models of similar size and even surpasses some much larger models, demonstrating superior performance in code generation, code completion, code editing, code reasoning, and software engineering tasks.

[198] arXiv:2506.03785 (replaced) [pdf, html, other]
Title: Knockout LLM Assessment: Using Large Language Models for Evaluations through Iterative Pairwise Comparisons
Isik Baran Sandan, Tu Anh Dinh, Jan Niehues
Comments: Accepted to GEM @ ACL 2025
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)

Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.

[199] arXiv:2506.03901 (replaced) [pdf, html, other]
Title: Magic Mushroom: A Customizable Benchmark for Fine-grained Analysis of Retrieval Noise Erosion in RAG Systems
Yuxin Zhang, Yan Wang, Yongrui Chen, Shenyu Zhang, Xinbang Dai, Sheng Bi, Guilin Qi
Subjects: Computation and Language (cs.CL)

Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external retrieved information, mitigating issues such as hallucination and outdated knowledge. However, RAG systems are highly sensitive to retrieval noise prevalent in real-world scenarios. Existing benchmarks fail to emulate the complex and heterogeneous noise distributions encountered in real-world retrieval environments, undermining reliable robustness assessment. In this paper, we define four categories of retrieval noise based on linguistic properties and noise characteristics, aiming to reflect the heterogeneity of noise in real-world scenarios. Building on this, we introduce Magic Mushroom, a benchmark for replicating "magic mushroom" noise: contexts that appear relevant on the surface but covertly mislead RAG systems. Magic Mushroom comprises 7,468 single-hop and 3,925 multi-hop question-answer pairs. More importantly, Magic Mushroom enables researchers to flexibly configure combinations of retrieval noise according to specific research objectives or application scenarios, allowing for highly controlled evaluation setups. We evaluate LLM generators of varying parameter scales and classic RAG denoising strategies under diverse noise distributions to investigate their performance dynamics during progressive noise encroachment. Our analysis reveals that both generators and denoising strategies have significant room for improvement and exhibit extreme sensitivity to noise distributions. Magic Mushroom emerges as a promising tool for evaluating and advancing noise-robust RAG systems, accelerating their widespread deployment in real-world applications. The Magic Mushroom benchmark is available at this https URL.

[200] arXiv:2506.04108 (replaced) [pdf, html, other]
Title: Rectified Sparse Attention
Yutao Sun, Tianzhu Ye, Li Dong, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang, Furu Wei
Subjects: Computation and Language (cs.CL)

Efficient long-sequence generation is a critical challenge for Large Language Models. While recent sparse decoding methods improve efficiency, they suffer from KV cache misalignment, where approximation errors accumulate and degrade generation quality. In this work, we propose Rectified Sparse Attention (ReSA), a simple yet effective method that combines block-sparse attention with periodic dense rectification. By refreshing the KV cache at fixed intervals using a dense forward pass, ReSA bounds error accumulation and preserves alignment with the pretraining distribution. Experiments across math reasoning, language modeling, and retrieval tasks demonstrate that ReSA achieves near-lossless generation quality with significantly improved efficiency. Notably, ReSA delivers up to 2.42$\times$ end-to-end speedup under decoding at 256K sequence length, making it a practical solution for scalable long-context inference. Code is available at this https URL.

[201] arXiv:2407.18213 (replaced) [pdf, html, other]
Title: Scaling Trends in Language Model Robustness
Nikolaus Howe, Ian McKenzie, Oskar Hollinsworth, Michał Zajac, Tom Tseng, Aaron Tucker, Pierre-Luc Bacon, Adam Gleave
Comments: 59 pages; updated to ICML version
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Cryptography and Security (cs.CR)

Increasing model size has unlocked a dazzling array of capabilities in modern language models. At the same time, even frontier models remain vulnerable to jailbreaks and prompt injections, despite concerted efforts to make them robust. As both attack and defense gain access to more compute, and as models become larger, what happens to robustness? We argue that to answer this question requires a \emph{scaling} approach, which we employ in an extensive study of language model robustness across several classification tasks, model families, and adversarial attacks. We find that in the absence of explicit safety training, larger models are not consistently more robust; however, scale improves sample efficiency in adversarial training, though it worsens compute efficiency. Further, we find that increasing attack compute smoothly improves attack success rate against both undefended and adversarially trained models. Finally, after exploring robustness transfer across attacks and threat models, we combine attack and defense scaling rates to study the offense-defense balance. We find that while attack scaling outpaces adversarial training across all models studied, larger adversarially trained models might give defense the advantage in the long run. These results underscore the utility of the scaling lens, and provide a paradigm for evaluating future attacks and defenses on frontier models.

[202] arXiv:2410.22944 (replaced) [pdf, html, other]
Title: Focus On This, Not That! Steering LLMs with Adaptive Feature Specification
Tom A. Lamb, Adam Davies, Alasdair Paren, Philip H.S. Torr, Francesco Pinto
Comments: 36pages, 19 figures
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Despite the success of Instruction Tuning (IT) in training large language models (LLMs), such models often leverage spurious or biased features learnt from their training data and can become misaligned, leading to undesired behaviours. While existing techniques can steer model behaviour at inference-time, they are often post-hoc and do not embed steering as an intrinsic model feature. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across diverse benchmarks, we demonstrate that FIT: (i) successfully steers behaviour at inference time; (ii) increases robustness by amplifying core task signals and down-weighting spurious cues; (iii) mitigates social bias by suppressing demographic attributes; and (iv) generalises under distribution shifts and to previously unseen focus features. FIT therefore offers a lightweight, intrinsic mechanism for building more robust, fair, and easily controllable LLMs.

[203] arXiv:2410.23884 (replaced) [pdf, html, other]
Title: Failure Modes of LLMs for Causal Reasoning on Narratives
Khurram Yamin, Shantanu Gupta, Gaurav R. Ghosal, Zachary C. Lipton, Bryan Wilder
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

In this work, we investigate the causal reasoning abilities of large language models (LLMs) through the representative problem of inferring causal relationships from narratives. We find that even state-of-the-art language models rely on unreliable shortcuts, both in terms of the narrative presentation and their parametric knowledge. For example, LLMs tend to determine causal relationships based on the topological ordering of events (i.e., earlier events cause later ones), resulting in lower performance whenever events are not narrated in their exact causal order. Similarly, we demonstrate that LLMs struggle with long-term causal reasoning and often fail when the narratives are long and contain many events. Additionally, we show LLMs appear to rely heavily on their parametric knowledge at the expense of reasoning over the provided narrative. This degrades their abilities whenever the narrative opposes parametric knowledge. We extensively validate these failure modes through carefully controlled synthetic experiments, as well as evaluations on real-world narratives. Finally, we observe that explicitly generating a causal graph generally improves performance while naive chain-of-thought is ineffective. Collectively, our results distill precise failure modes of current state-of-the-art models and can pave the way for future techniques to enhance causal reasoning in LLMs.

[204] arXiv:2412.09429 (replaced) [pdf, html, other]
Title: From Intention To Implementation: Automating Biomedical Research via LLMs
Yi Luo, Linghang Shi, Yihao Li, Aobo Zhuang, Yeyun Gong, Ling Liu, Chen Lin
Comments: To appear in SCIENCE CHINA Information Sciences. If you find our work useful, please cite us as: @article{ BioResearcher, author = "Yi Luo and Linghang Shi and Yihao Li and Aobo Zhuang and Yeyun Gong and Ling Liu and Chen Lin", title = "From Intention To Implementation: Automating Biomedical Research via LLMs", journal = "SCIENCE CHINA Information Sciences", year = "2025" }
Subjects: Multiagent Systems (cs.MA); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols, on average, outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.

[205] arXiv:2412.10510 (replaced) [pdf, html, other]
Title: DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
Tobias Braun, Mark Rothermel, Marcus Rohrbach, Anna Rohrbach
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.

[206] arXiv:2412.16187 (replaced) [pdf, html, other]
Title: HashEvict: A Pre-Attention KV Cache Eviction Strategy using Locality-Sensitive Hashing
Minghui Liu, Tahseen Rabbani, Tony O'Halloran, Ananth Sankaralingam, Mary-Anne Hartley, Furong Huang, Cornelia Fermüller, Yiannis Aloimonos
Comments: 10 pages, 6 figures, 2 tables
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Data Structures and Algorithms (cs.DS); Performance (cs.PF)

Transformer-based large language models (LLMs) use the key-value (KV) cache to significantly accelerate inference by storing the key and value embeddings of past tokens. However, this cache consumes significant GPU memory. In this work, we introduce HashEvict, an algorithm that uses locality-sensitive hashing (LSH) to compress the KV cache. HashEvict quickly locates tokens in the cache that are cosine dissimilar to the current query token. This is achieved by computing the Hamming distance between binarized Gaussian projections of the current token query and cached token keys, with a projection length much smaller than the embedding dimension. We maintain a lightweight binary structure in GPU memory to facilitate these calculations. Unlike existing compression strategies that compute attention to determine token retention, HashEvict makes these decisions pre-attention, thereby reducing computational costs. Additionally, HashEvict is dynamic - at every decoding step, the key and value of the current token replace the embeddings of a token expected to produce the lowest attention score. We demonstrate that HashEvict can compress the KV cache by 30%-70% while maintaining high performance across reasoning, multiple-choice, long-context retrieval and summarization tasks.

[207] arXiv:2502.06854 (replaced) [pdf, html, other]
Title: Can Large Language Models Understand Intermediate Representations in Compilers?
Hailong Jiang, Jianfeng Zhu, Yao Wan, Bo Fang, Hongyu Zhang, Ruoming Jin, Qiang Guan
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at

[208] arXiv:2502.09560 (replaced) [pdf, html, other]
Title: EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents
Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang, Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, Heng Ji, Huan Zhang, Tong Zhang
Comments: Accepted to ICML 2025
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)

Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9\% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code and dataset are available at this https URL.

[209] arXiv:2502.12171 (replaced) [pdf, html, other]
Title: GoRA: Gradient-driven Adaptive Low Rank Adaptation
Haonan He, Peng Ye, Yuchen Ren, Yuan Yuan, Luyang Zhou, Shucun Ju, Lei Chen
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models (LLMs), with its effectiveness influenced by two key factors: rank selection and weight initialization. While numerous LoRA variants have been proposed to improve performance by addressing one of these aspects, they often compromise usability or computational efficiency. In this paper, we analyze and identify the core limitations of existing approaches and propose a novel framework -- GoRA (Gradient-driven Adaptive Low Rank Adaptation) -- that simultaneously adapts both the rank and initialization strategy within a unified framework. GoRA leverages gradient information during training to dynamically assign optimal ranks and initialize low-rank adapter weights in an adaptive manner. To our knowledge, GoRA is the first method that not only addresses the limitations of prior approaches -- which often focus on either rank selection or initialization in isolation -- but also unifies both aspects within a single framework, enabling more effective and efficient adaptation. Extensive experiments across various architectures and modalities show that GoRA consistently outperforms existing LoRA-based methods while preserving the efficiency of vanilla LoRA. For example, when fine-tuning Llama3.1-8B-Base for mathematical reasoning, GoRA achieves a 5.13-point improvement over standard LoRA and even outperforms full fine-tuning by 2.05 points under high-rank settings.

[210] arXiv:2502.15652 (replaced) [pdf, html, other]
Title: Empowering LLMs with Logical Reasoning: A Comprehensive Survey
Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van Rooij, Kun Zhang, Zhouchen Lin
Comments: Accepted by IJCAI 2025 (Survey Track)
Subjects: Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Large language models (LLMs) have achieved remarkable successes on various tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of LLMs, which can be categorized into the following two aspects: (1) Logical question answering: LLMs often fail to generate the correct answer within a complex logical problem which requires sophisticated deductive, inductive or abductive reasoning given a collection of premises and constrains. (2) Logical consistency: LLMs are prone to producing responses contradicting themselves across different questions. For example, a state-of-the-art question-answering LLM Macaw, answers Yes to both questions Is a magpie a bird? and Does a bird have wings? but answers No to Does a magpie have wings?. To facilitate this research direction, we comprehensively investigate the most cutting-edge methods and propose a detailed taxonomy. Specifically, to accurately answer complex logic questions, previous methods can be categorized based on reliance on external solvers, prompts, and fine-tuning. To avoid logical contradictions, we discuss concepts and solutions of various logical consistencies, including implication, negation, transitivity, factuality consistencies, and their composites. In addition, we review commonly used benchmark datasets and evaluation metrics, and discuss promising research directions, such as extending to modal logic to account for uncertainty and developing efficient algorithms that simultaneously satisfy multiple logical consistencies.

[211] arXiv:2502.17709 (replaced) [pdf, html, other]
Title: Contrastive Visual Data Augmentation
Yu Zhou, Bingxuan Li, Mohan Tang, Xiaomeng Jin, Te-Lin Wu, Kuan-Hao Huang, Heng Ji, Kai-Wei Chang, Nanyun Peng
Journal-ref: ICML 2025
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG); Multimedia (cs.MM)

Large multimodal models (LMMs) often struggle to recognize novel concepts, as they rely on pre-trained knowledge and have limited ability to capture subtle visual details. Domain-specific knowledge gaps in training also make them prone to confusing visually similar, commonly misrepresented, or low-resource concepts. To help LMMs better align nuanced visual features with language, improving their ability to recognize and reason about novel or rare concepts, we propose a Contrastive visual Data Augmentation (CoDA) strategy. CoDA extracts key contrastive textual and visual features of target concepts against the known concepts they are misrecognized as, and then uses multimodal generative models to produce targeted synthetic data. Automatic filtering of extracted features and augmented images is implemented to guarantee their quality, as verified by human annotators. We show the effectiveness and efficiency of CoDA on low-resource concept and diverse scene recognition datasets including INaturalist and SUN. We additionally collect NovelSpecies, a benchmark dataset consisting of newly discovered animal species that are guaranteed to be unseen by LMMs. LLaVA-1.6 1-shot updating results on these three datasets show CoDA significantly improves SOTA visual data augmentation strategies by 12.3% (NovelSpecies), 5.1% (SUN), and 6.0% (iNat) absolute gains in accuracy.

[212] arXiv:2502.18504 (replaced) [pdf, html, other]
Title: TurboFuzzLLM: Turbocharging Mutation-based Fuzzing for Effectively Jailbreaking Large Language Models in Practice
Aman Goel, Xian Carrie Wu, Zhe Wang, Dmitriy Bespalov, Yanjun Qi
Comments: Oral presentation at NAACL 2025 industry track
Subjects: Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Machine Learning (cs.LG)

Jailbreaking large-language models (LLMs) involves testing their robustness against adversarial prompts and evaluating their ability to withstand prompt attacks that could elicit unauthorized or malicious responses. In this paper, we present TurboFuzzLLM, a mutation-based fuzzing technique for efficiently finding a collection of effective jailbreaking templates that, when combined with harmful questions, can lead a target LLM to produce harmful responses through black-box access via user prompts. We describe the limitations of directly applying existing template-based attacking techniques in practice, and present functional and efficiency-focused upgrades we added to mutation-based fuzzing to generate effective jailbreaking templates automatically. TurboFuzzLLM achieves $\geq$ 95\% attack success rates (ASR) on public datasets for leading LLMs (including GPT-4o \& GPT-4 Turbo), shows impressive generalizability to unseen harmful questions, and helps in improving model defenses to prompt attacks. TurboFuzzLLM is available open source at this https URL.

[213] arXiv:2503.05740 (replaced) [pdf, html, other]
Title: ChatWise: A Strategy-Guided Chatbot for Enhancing Cognitive Support in Older Adults
Zhengbang Yang, Junyuan Hong, Yijiang Pang, Jiayu Zhou, Zhuangdi Zhu
Subjects: Computers and Society (cs.CY); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Cognitive health in older adults presents a growing challenge. Although conversational interventions show feasibility in improving cognitive wellness, human caregiver resources remain overloaded. AI-based chatbots have shown promise, yet existing work is often limited to implicit strategies or heavily depends on training and label resources. In response, we propose a strategy-guided AI chatbot named ChatWise that follows a dual-level conversation reasoning framework. It integrates macro-level strategy planning and micro-level utterance generation to enable engaging, multi-turn dialogue tailored to older adults. Empirical results show that ChatWise closely aligns with professional human caregiver behaviors in offline evaluation using real clinic data, and achieves positive user cognitive and emotional responses in interactive simulations with digital twins, which significantly outperforms AI baselines that follow implicit conversation generation.

[214] arXiv:2503.09117 (replaced) [pdf, html, other]
Title: GRU: Mitigating the Trade-off between Unlearning and Retention for LLMs
Yue Wang, Qizhou Wang, Feng Liu, Wei Huang, Yali Du, Xiaojiang Du, Bo Han
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Large language model (LLM) unlearning has demonstrated its essential role in removing privacy and copyright-related responses, crucial for their legal and safe applications. However, the pursuit of complete unlearning often comes with substantial costs due to its compromises in their general functionality, leading to a notorious trade-off between unlearning and retention. It motivates this paper to explore enhanced unlearning schemes that can mitigate this trade-off. Specifically, we propose Gradient Rectified Unlearning (GRU), an improved framework that regulates the directions of gradient updates during the unlearning procedure such that their side impacts on other, unrelated responses can be minimized. GRU is easy and general to implement, demonstrating practical effectiveness across a variety of well-established unlearning benchmarks.

[215] arXiv:2504.02234 (replaced) [pdf, html, other]
Title: LLM Social Simulations Are a Promising Research Method
Jacy Reese Anthis, Ryan Liu, Sean M. Richardson, Austin C. Kozlowski, Bernard Koch, James Evans, Erik Brynjolfsson, Michael Bernstein
Comments: Published at ICML 2025
Subjects: Human-Computer Interaction (cs.HC); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computers and Society (cs.CY)

Accurate and verifiable large language model (LLM) simulations of human research subjects promise an accessible data source for understanding human behavior and training new AI systems. However, results to date have been limited, and few social scientists have adopted this method. In this position paper, we argue that the promise of LLM social simulations can be achieved by addressing five tractable challenges. We ground our argument in a review of empirical comparisons between LLMs and human research subjects, commentaries on the topic, and related work. We identify promising directions, including context-rich prompting and fine-tuning with social science datasets. We believe that LLM social simulations can already be used for pilot and exploratory studies, and more widespread use may soon be possible with rapidly advancing LLM capabilities. Researchers should prioritize developing conceptual models and iterative evaluations to make the best use of new AI systems.

[216] arXiv:2504.17934 (replaced) [pdf, html, other]
Title: Toward a Human-Centered Evaluation Framework for Trustworthy LLM-Powered GUI Agents
Chaoran Chen, Zhiping Zhang, Ibrahim Khalilov, Bingcan Guo, Simret A Gebreegziabher, Yanfang Ye, Ziang Xiao, Yaxing Yao, Tianshi Li, Toby Jia-Jun Li
Subjects: Human-Computer Interaction (cs.HC); Computation and Language (cs.CL); Cryptography and Security (cs.CR)

The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.

[217] arXiv:2505.13438 (replaced) [pdf, html, other]
Title: Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Penghui Qi, Zichen Liu, Tianyu Pang, Chao Du, Wee Sun Lee, Min Lin
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.

[218] arXiv:2505.15080 (replaced) [pdf, html, other]
Title: SUS backprop: linear backpropagation algorithm for long inputs in transformers
Sergey Pankov, Georges Harik
Comments: 21 pages, 9 figures; main results unchanged, Fig.5 updated, some text rearranged
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

It is straightforward to design an unbiased gradient estimator that stochastically cuts the backpropagation flow through any part of a computational graph. By cutting the parts that have little effect on the computation, one can potentially save a significant amount of backpropagation computation in exchange for a minimal increase in the stochastic gradient variance, in some situations. Such a situation occurs in the attention mechanism of the transformer architecture. For long sequences, attention becomes the limiting factor, as its compute requirements increase quadratically with sequence length $n$. At the same time, most attention weights become very small, as most attention heads tend to connect a given token with only a small fraction of other tokens in the sequence. These weights become promising targets for cutting backpropagation. We propose a simple probabilistic rule controlled by a single parameter $c$ that cuts back-propagation through most attention weights, leaving at most $c$ interactions per token per attention head. This brings a factor of $c/n$ reduction in the compute required for the attention backpropagation, turning it from quadratic $O(n^2)$ to linear complexity $O(nc)$. We have empirically verified that, for a typical transformer model, cutting about $99\%$ of the attention gradient flow (i.e. choosing $c \sim 25-30$) results in relative gradient variance increase of only about $1\%$ for $n \sim 2000$, and it decreases with $n$. This approach is amenable to efficient sparse matrix implementation, thus being promising for making the cost of a backward pass negligible relative to the cost of a forward pass when training a transformer model on long sequences.

[219] arXiv:2505.16400 (replaced) [pdf, html, other]
Title: AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro, Wei Ping
Comments: Add pass@1024 evaluation results for LiveCodeBench v6. We release the models at: this https URL
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.

[220] arXiv:2505.19536 (replaced) [pdf, html, other]
Title: FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Jintao Tong, Wenwei Jin, Pengda Qin, Anqi Li, Yixiong Zou, Yuhong Li, Yuhua Li, Ruixuan Li
Comments: 19 pages, 11 figures
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at this https URL

[221] arXiv:2505.21091 (replaced) [pdf, html, other]
Title: Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
Anna Neumann, Elisabeth Kirsten, Muhammad Bilal Zafar, Jatinder Singh
Comments: Forthcoming in Proceedings of ACM FAccT 2025
Subjects: Computers and Society (cs.CY); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.

[222] arXiv:2505.21959 (replaced) [pdf, other]
Title: EnsemW2S: Enhancing Weak-to-Strong Generalization with Large Language Model Ensembles
Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao Deng, Anirudh Satheesh, Bang An, Bayan Bruss, John Langford, Furong Huang
Comments: Manuscript uploaded as version2 of arXiv:2410.04571
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

With Large Language Models (LLMs) rapidly approaching and potentially surpassing human-level performance, it has become imperative to develop approaches capable of effectively supervising and enhancing these powerful models using smaller, human-level models exposed to only human-level data. We address this critical weak-to-strong (W2S) generalization challenge by proposing a novel method aimed at improving weak experts, by training on the same limited human-level data, enabling them to generalize to complex, super-human-level tasks. Our approach, called \textbf{EnsemW2S}, employs a token-level ensemble strategy that iteratively combines multiple weak experts, systematically addressing the shortcomings identified in preceding iterations. By continuously refining these weak models, we significantly enhance their collective ability to supervise stronger student models. We extensively evaluate the generalization performance of both the ensemble of weak experts and the subsequent strong student model across in-distribution (ID) and out-of-distribution (OOD) datasets. For OOD, we specifically introduce question difficulty as an additional dimension for defining distributional shifts. Our empirical results demonstrate notable improvements, achieving 4\%, and 3.2\% improvements on ID datasets and, upto 6\% and 2.28\% on OOD datasets for experts and student models respectively, underscoring the effectiveness of our proposed method in advancing W2S generalization.

[223] arXiv:2505.22251 (replaced) [pdf, html, other]
Title: Evaluation of LLMs in Speech is Often Flawed: Test Set Contamination in Large Language Models for Speech Recognition
Yuan Tseng, Titouan Parcollet, Rogier van Dalen, Shucong Zhang, Sourav Bhattacharya
Subjects: Audio and Speech Processing (eess.AS); Computation and Language (cs.CL)

Recent work suggests that large language models (LLMs) can improve performance of speech tasks compared to existing systems. To support their claims, results on LibriSpeech and Common Voice are often quoted. However, this work finds that a substantial amount of the LibriSpeech and Common Voice evaluation sets appear in public LLM pretraining corpora. This calls into question the reliability of findings drawn from these two datasets. To measure contamination impact, LLMs trained with/without contamination are compared. A contaminated LLM is more likely to generate test sentences it has seen during training. Then, speech recognisers based on LLMs are compared. They show only subtle error rate differences if the LLM is contaminated, but assign significantly higher probabilities to transcriptions seen during LLM training. Results show that LLM outputs can be biased by tiny amounts of data contamination, highlighting the importance of evaluating LLM-based speech systems with held-out data.

[224] arXiv:2505.24195 (replaced) [pdf, html, other]
Title: WikiGap: Promoting Epistemic Equity by Surfacing Knowledge Gaps Between English Wikipedia and other Language Editions
Zining Wang, Yuxuan Zhang, Dongwook Yoon, Nicholas Vincent, Farhan Samir, Vered Shwartz
Subjects: Human-Computer Interaction (cs.HC); Computation and Language (cs.CL)

With more than 11 times as many pageviews as the next, English Wikipedia dominates global knowledge access relative to other language editions. Readers are prone to assuming English Wikipedia as a superset of all language editions, leading many to prefer it even when their primary language is not English. Other language editions, however, comprise complementary facts rooted in their respective cultures and media environments, which are marginalized in English Wikipedia. While Wikipedia's user interface enables switching between language editions through its Interlanguage Link (ILL) system, it does not reveal to readers that other language editions contain valuable, complementary information. We present WikiGap, a system that surfaces complementary facts sourced from other Wikipedias within the English Wikipedia interface. Specifically, by combining a recent multilingual information-gap discovery method with a user-centered design, WikiGap enables access to complementary information from French, Russian, and Chinese Wikipedia. In a mixed-methods study (n=21), WikiGap significantly improved fact-finding accuracy, reduced task time, and received a 32-point higher usability score relative to Wikipedia's current ILL-based navigation system. Participants reported increased awareness of the availability of complementary information in non-English editions and reconsidered the completeness of English Wikipedia. WikiGap thus paves the way for improved epistemic equity across language editions.

[225] arXiv:2505.24871 (replaced) [pdf, other]
Title: MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning
Yiqing Liang, Jielin Qiu, Wenhao Ding, Zuxin Liu, James Tompkin, Mengdi Xu, Mengzhou Xia, Zhengzhong Tu, Laixi Shi, Jiacheng Zhu
Comments: Project Webpage: this https URL
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Machine Learning (cs.LG)

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for post-training large language models (LLMs), achieving state-of-the-art performance on tasks with structured, verifiable answers. Applying RLVR to Multimodal LLMs (MLLMs) presents significant opportunities but is complicated by the broader, heterogeneous nature of vision-language tasks that demand nuanced visual, logical, and spatial capabilities. As such, training MLLMs using RLVR on multiple datasets could be beneficial but creates challenges with conflicting objectives from interaction among diverse datasets, highlighting the need for optimal dataset mixture strategies to improve generalization and reasoning. We introduce a systematic post-training framework for Multimodal LLM RLVR, featuring a rigorous data mixture problem formulation and benchmark implementation. Specifically, (1) We developed a multimodal RLVR framework for multi-dataset post-training by curating a dataset that contains different verifiable vision-language problems and enabling multi-domain online RL learning with different verifiable rewards; (2) We proposed a data mixture strategy that learns to predict the RL fine-tuning outcome from the data mixture distribution, and consequently optimizes the best mixture. Comprehensive experiments showcase that multi-domain RLVR training, when combined with mixture prediction strategies, can significantly boost MLLM general reasoning capacities. Our best mixture improves the post-trained model's accuracy on out-of-distribution benchmarks by an average of 5.24% compared to the same model post-trained with uniform data mixture, and by a total of 20.74% compared to the pre-finetuning baseline.

[226] arXiv:2505.24875 (replaced) [pdf, html, other]
Title: ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Yu Zhang, Yunqi Li, Yifan Yang, Rui Wang, Yuqing Yang, Dai Qi, Jianmin Bao, Dongdong Chen, Chong Luo, Lili Qiu
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)

Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: this http URL.

[227] arXiv:2506.00382 (replaced) [pdf, html, other]
Title: Spectral Insights into Data-Oblivious Critical Layers in Large Language Models
Xuyuan Liu, Lei Hsiung, Yaoqing Yang, Yujun Yan
Comments: Accepted by Findings of ACL2025
Subjects: Machine Learning (cs.LG); Computation and Language (cs.CL)

Understanding how feature representations evolve across layers in large language models (LLMs) is key to improving their interpretability and robustness. While recent studies have identified critical layers linked to specific functions or behaviors, these efforts typically rely on data-dependent analyses of fine-tuned models, limiting their use to post-hoc settings. In contrast, we introduce a data-oblivious approach to identify intrinsic critical layers in pre-fine-tuned LLMs by analyzing representation dynamics via Centered Kernel Alignment(CKA). We show that layers with significant shifts in representation space are also those most affected during fine-tuning--a pattern that holds consistently across tasks for a given model. Our spectral analysis further reveals that these shifts are driven by changes in the top principal components, which encode semantic transitions from rationales to conclusions. We further apply these findings to two practical scenarios: efficient domain adaptation, where fine-tuning critical layers leads to greater loss reduction compared to non-critical layers; and backdoor defense, where freezing them reduces attack success rates by up to 40%.

[228] arXiv:2506.00653 (replaced) [pdf, html, other]
Title: Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
Femi Bello, Anubrata Das, Fanzhi Zeng, Fangcong Yin, Liu Leqi
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

It has been hypothesized that neural networks with similar architectures trained on similar data learn shared representations relevant to the learning task. We build on this idea by extending the conceptual framework where representations learned across models trained on the same data can be expressed as linear combinations of a \emph{universal} set of basis features. These basis features underlie the learning task itself and remain consistent across models, regardless of scale. From this framework, we propose the \textbf{Linear Representation Transferability (LRT)} Hypothesis -- that there exists an affine transformation between the representation spaces of different models. To test this hypothesis, we learn affine mappings between the hidden states of models of different sizes and evaluate whether steering vectors -- directions in hidden state space associated with specific model behaviors -- retain their semantic effect when transferred from small to large language models using the learned mappings. We find strong empirical evidence that such affine mappings can preserve steering behaviors. These findings suggest that representations learned by small models can be used to guide the behavior of large models, and that the LRT hypothesis may be a promising direction on understanding representation alignment across model scales.

[229] arXiv:2506.03100 (replaced) [pdf, html, other]
Title: Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Yang Guo, Yutian Tao, Yifei Ming, Robert D. Nowak, Yingyu Liang
Comments: Under Review
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Information Retrieval (cs.IR); Statistics Theory (math.ST)

Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.

[230] arXiv:2506.03147 (replaced) [pdf, html, other]
Title: UniWorld-V1: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu, Shaodong Wang, Yunyang Ge, Yatian Pang, Li Yuan
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)

Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld-V1, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld-V1 achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld-V1 framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.

Total of 230 entries
Showing up to 2000 entries per page: fewer | more | all
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack