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Abstract

In automatic speech recognition (ASR), phoneme-based
multilingual pre-training and crosslingual fine-tuning is attrac-
tive for its high data efficiency and competitive results com-
pared to subword-based models. However, Weighted Finite
State Transducer (WFST) based decoding is limited by its com-
plex pipeline and inability to leverage large language mod-
els (LLMs). Therefore, we propose LLM-based phoneme-to-
grapheme (LLM-P2G) decoding for phoneme-based ASR, con-
sisting of speech-to-phoneme (S2P) and phoneme-to-grapheme
(P2G). A challenge is that there seems to have information
loss in cascading S2P and P2G. To address this challenge,
we propose two training strategies: data augmentation with
noisy phonemes (DANP), and randomized top-K marginalized
(TKM) training and decoding. Our experimental results show
that LLM-P2G outperforms WFST-based systems in crosslin-
gual ASR for Polish and German, by relative WER reductions
of 3.6% and 6.9% respectively.
Index Terms: Speech Recognition, Phoneme-to-Grapheme,
Large Language Model, Top-K Marginalized

1. Introduction
Most languages worldwide are under-resourced, posing sig-
nificant challenges in developing high-performance ASR sys-
tems. Therefore, multilingual pre-training and crosslingual
fine-tuning have been developed, enabling information sharing
and knowledge transferring between languages [1, 2, 3, 4, 5, 6].
Among these advancements, phoneme-based multilingual pre-
training and crosslingual fine-tuning, in particular the weakly-
phonetic-supervision-based approach, called Whistle [7, 8], is
attractive for its high data efficiency and competitive results
compared to subword-based models. Presumably, this is be-
cause phoneme-based supervision enables more efficient data
sharing than subword-based supervision. Phonetic units such as
described in International Phonetic Alphabet (IPA) are exactly
those sounds shared in human languages. However, challenges
remain for decoding in phoneme-based ASR. The widely used
Weighted Finite State Transducer (WFST) [9] based decoding
(Figure 1(a)) delivers strong decoding performance but has two
major drawbacks: 1) it involves a complex pipeline, which
needs construction of pronunciation lexicons and compiling of
WFSTs; 2) it is not easy to effectively leverage the rich linguis-
tic knowledge in large language models (LLMs) [10, 11, 12].
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Figure 1: Phoneme-based ASR with WFST-based decoding (a)
and with LLM-P2G decoding (b). In recognizing speech x into
text y, phonemes arise as intermediate states, denoted by h.
LLM-P2G decoding can be either best path decoding or top-K
marginalized (TKM) decoding.

In this work, we propose LLM-based phoneme-to-
grapheme (referred to as LLM-P2G) for phoneme-based ASR,
as shown in Figure 1(b). It belongs to a two-step ASR archi-
tecture [13, 14], which can be referred to as SPG, consisting
of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G).
The S2P model can be obtained by fine-tuning a phoneme-
based multilingual S2P backbone (Whistle) over speech data
with phoneme labels [7], which we refer to as Whistle-S2P.
After converting speech into phonemes by the S2P model, the
decoding of phonemes into text (usually represented by sub-
words) is called phoneme-to-grapheme. The P2G model can
be obtained by fine-tuning an LLM. Since both phonemes and
subwords are discrete tokens1, such P2G model can be naturally
trained over LLMs, and inherits the powerful language under-
standing and generation capabilities of LLMs. Interestingly, it
is found that in large-scale models, the P2G capability (called
IPA transliterate in [15]) emerges.

A challenge in building the two-step ASR is that there
seems to have information loss in cascading S2P and P2G. In
decoding, the hypothesized phoneme sequence output from S2P
may contain errors, which may propagate to P2G. To address
this challenge, we propose two training strategies: data aug-
mentation with noisy phonemes (DANP), and randomized top-
K marginalized (TKM) training and decoding. In DANP, we
run S2P to generate more diversified hypothesized phoneme se-
quences (i.e. adding noise), which are used to train the P2G
model. This makes the training and decoding of P2G to be more
matched. In TKM, marginalization over hypothesized phoneme
sequences is performed, which reduces the influence of decod-
ing with only a single hypothesized phoneme sequence. These
methods effectively overcome the possible information loss and
successfully optimize the P2G model. Our experiments show

1Remarkably, the IPA symbols all fall in the token set of mT5 – the
LLM used in our experiments.
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that using the same S2P model, LLM-P2G decoding surpasses
WFST-based decoding in crosslingual ASR tasks for Polish and
German, achieving up to 3.6% and 6.9% relative WER reduc-
tions, respectively.

2. Related Work
The two-step idea of recognizing speech to phonemes and then
to graphemes has been studied for crosslingual ASR [13, 14].
These prior works share a similar motivation with ours that
phoneme-based supervision is advantageous for multilingual
acoustic representation learning. However, both studies do not
explore using LLMs for P2G for phoneme-based ASR.

Large language models (LLMs) [10, 11, 12] have demon-
strated remarkable performance on a variety of natural language
processing (NLP) tasks, showcasing strong capabilities in un-
derstanding and generating human languages. Different inter-
faces between speech and languages have been studied to inte-
grate LLMs with ASR, including ASR-generated text and con-
tinuous embeddings of speech. In [16], ASR-generated text
is fed into the LLM for error correction. In [17, 18, 19], the
output from speech encoders are connected to LLMs through
projector modules. However, these prior studies are generally
tested for monolingual ASR (mainly English) and not aimed to
improve phoneme-based speech recognition for low-resourced
languages. The phoneme-based ASR architecture with Whistle-
S2P and LLM-P2G is investigated in this work and is found
to be efficient in leveraging large acoustic and language pre-
trained models for speech recognition. In contrast, using ASR-
generated text as the interface is heavier than using phonemes,
and using continuous embeddings of speech as the interface
needs additional projection modules.

3. Method
3.1. ASR architecture

In the following, we introduce different ASR architectures, in-
cluding the traditional one and the new architecture with LLM-
P2G proposed in this work. For both architectures, the acoustic
model (or say S2P) can be obtained by fine-tuning a phoneme-
based multilingual S2P backbone (Whistle) over speech data
with phoneme labels [7], which we refer to as Whistle-S2P.

Phoneme-based or subword-based ASR with WFST de-
coding is a traditional architecture, as shown in Figure 1(a).
The WFST framework is widely used in phoneme-based or
subword-based ASR systems, which integrates the constraints
of the acoustic model, the lexicon, and the language model into
a unified graph structure. An acoustic encoder is used to convert
speech features into phoneme or subword logits. Then, WFST
based decoding is used to decode logits into words. The WFST
framework can also be adopted for subword-based ASR, where
subwords are used as modeling units instead of phonemes, and
the lexicon maps word to subwords.

Phoneme-based ASR with LLM-P2G decoding is pro-
posed in this work, as shown in Figure 1(b). Given acoustic ob-
servation x ≜ x1, · · · , xT , the task of ASR is to find the most
likely text y ≜ y1, · · · yL, represented by subword sequence.
In phoneme-based ASR, the hypothesized phoneme sequence
is denoted by h, and a two-step architecture can be defined as
follows, where phonemes arise as latent variables:

p(y|x) =
∑
h

p(h|x)p(y|h) (1)

Here we assume that when given phonemes, we can infer text

from phonemes, without depending on lower-level speech sig-
nal, i.e. p(y|x,h) = p(y|h). Thus, we obtain a two-step ASR
architecture, which can be referred to as SPG, consisting of a
S2P model p(h|x) and a P2G model p(y|h).

The P2G model can be obtained by fine-tuning an LLM,
which we refer to as LLM-P2G. An LLM is a sequence gener-
ation model trained on massive amounts of unsupervised text
data, which can be in the architectures of decode-only [11, 12]
or encoder-decoder [10]. Since both phoneme sequence h and
subword sequence y are discrete tokens, any type of LLMs,
whether decode-only or encoder-decoder, can be naturally fine-
tuned for P2G p(y|h). A challenge in training and using the
LLM-P2G model is that there seems to have information loss
in cascading S2P and P2G. In the following, we propose two
training strategies (DANP and TKM) to address this challenge.

3.2. Data Augmentation with Noisy Phonemes (DANP)

Usually in ASR testing, the 1-best phoneme sequence gener-
ated from the S2P model is fed into the P2G model. So if the
P2G model p(y|h) is fine-tuned using only the single annotated
phoneme sequence, then there is a severe mismatch in training
and testing for ASR. The input phonemes fed to P2G in ASR
testing is much noiser. Therefore, a straightforward strategy to
compensate for such a mismatch is to add noise to the input
phonemes fed to P2G in training. There are two schemes.

Beam search. We employ beam search on the S2P model
to generate top-K phoneme hypotheses for each utterance.

Random sampling. Alternatively, we can draw stochastic
samples from the S2P model to generate more diversified hy-
pothesized phoneme sequences. Taking the CTC-based S2P
model as an example (which is the one used in our experiments),
the sampling procedure is as follows. We calculate the softmax
probabilities for S2P output units including IPA symbols and
blank symbols, and at frame t = 1, · · · , T , we draw R symbols
according to the softmax probabilities. Thus we obtain R paths,
each with length T . For each path, we remove all blanks and
repeated labels from the path, which is the same as in CTC to
get a label sequence from a path [20]. Finally, we de-duplicate
the samples to obtain the hypothesized phoneme sequences.

3.3. Randomized top-K Marginalized (TKM) Training

The DANP strategy mainly address the mismatch in training
and testing when P2G decoding is based on the 1-best phoneme
sequence generated from S2P. Ideally, in P2G decoding, it
would be better to marginalize over multiple hypothesized h
to decode according to Eq. (1). To enable matched training
and testing, it would be better for the training objective of the
P2G model p(y|h) to be maximizing the marginal likelihood.
For training and testing with such a latent-variable model, we
are inspired by the RAG-Sequence technique used in Retrieval-
Augmented Generation (RAG) [21]. Technically, it treats the
retrieved document as a latent variable that is marginalized to
get the marginal likelihood via a top-K approximation. In our
case, the top-K hypothesized phoneme sequences are generated
using the S2P model, and the P2G model produces the subword
sequence probability for each hypothesized phoneme sequence,
which are then marginalized:

p(y|x) ≈
∑

h∈top-K(p(h|x))

p(h|x)p(y|h)

=

K∑
k=1

p(h(k)|x)
L∏

i=1

p(yi|h(k), y1:i−1)

(2)



Table 1: Word error rate (WER) comparison for Whistle fine-tuning (FT) models and LLM-P2G models. Results are shown for Polish
and German, with and without language model (LM). Under any column, except “Whistle Subword FT”, the other four rows share the
same acoustic model (or say S2P), called the Whistle-S2P model. For Whistle models, “w/o LM” means beam search, while “w LM”
means decoding with the WFST framework. For LLM-P2G, “w/o LM” means beam search, while “w LM” means using additional
re-scoring with LM. NA denotes not applied.

Model
Polish German

130 h 20 h 130 h 20 h
w/o LM w LM w/o LM w LM w/o LM w LM w/o LM w LM

Whistle Phoneme FT NA 4.30 NA 16.27 NA 15.73 NA 30.71
Whistle Subword FT 5.84 3.82 17.59 13.84 14.09 14.01 27.78 28.04

LLM-P2G 5.71 5.04 23.75 21.56 14.76 14.39 32.26 31.45
LLM-P2G + DANP 4.44 4.18 19.99 19.05 13.86 13.63 30.49 29.97

LLM-P2G + randomized TKM 4.01 3.68 19.19 17.36 13.44 13.03 29.20 28.78

Specifically, h(k) represents the k-th phoneme sequence gen-
erated by beam search using the S2P model. p(h(k)|x)
can be calculated by the CTC forward-backward algorithm.
p(yi|h(k), y1:i−1) can be calculated by the LLM-based P2G
model in an autoregressive way.

The above training technique for latent-variable models can
be generally referred to as top-K marginalized (TKM) training.
Furthermore, we propose a variation of TKM training where
more randomness is introduced in selecting the hypothesized
phoneme sequences for marginalization. Every time the train-
ing instance (x,y) is in a training minibatch, instead of always
taking the top-K hypothesized phoneme sequences (as ranked
by the S2P model), we randomly draw n hypothesized phoneme
sequences from top-K for marginalization (n < K), as follows:

p(y|x) ≈
n∑

j=1

p(h(kj)|x)p(y|h(kj)) (3)

where k1, · · · , kn are uniformly drawn from 1, · · · ,K. The
training objective in Eq. (3) is referred to as randomized TKM
training, to be differentiated from the standard TKM training.
The advantages include 1) better generalization, as it reduces
over-reliance on a specific S2P ranking; 2) more robust to noisy
S2P, as it helps when real-world S2P returns imperfect results.

3.4. Top-K Marginalized (TKM) Decoding

In decoding, we first run S2P beam search to obtain a set of
top-K phoneme sequences, h(1), · · · ,h(K). Then, for each
phoneme sequence h(k), we run P2G beam search with size S
and, after de-duplication, we obtain a set of subword sequences
Y. Each subword sequence in Y is scored by Eq. (2). A sub-
word sequence y ∈ Y may not have appeared in the beam
decoded from every h(k), k = 1, · · · ,K. Thus for efficient de-
coding, we make an approximation p(y|h(k)) ≈ 0, when y was
not generated during beam search from h(k). This is analogous
to Fast Decoding in the RAG-sequence technique [21]. Finally,
based on the score Eq. (2), the top-S subword sequence in Y
are obtained, which can be further re-scored, by combining Eq.
(2) with in-domain language model scores.

Compared to the DANP strategy, TKM decoding addresses
the mismatch in training and testing when P2G decoding is
based on the multiple candidate phoneme sequence generated
from S2P. Remarkably, for TKM decoding with the P2G model
obtained by randomized TKM training, a similar decoding pro-
cedure can be applied, except that we run S2P beam search to
obtain top-n phoneme sequences, because we do not need to in-
troduce randomness in decoding. In randomized TKM training,

the P2G model is trained to infer the likely subword sequence
from n candidate phoneme sequences.

4. Experiment
4.1. Dataset

Experiments are conducted on the CommonVoice (CV) dataset
[22], version 11.0 (released September 2022). Two languages
from different language families, Polish (pl) and German (de),
are selected, with 130 hours of training data per language, as
they both use Latin script like in the pre-trained S2P model’s
languages and are well-represented in the pre-trained LLM.

4.2. Model training and testing

Our models are trained with the CAT ASR toolkit [23]. We
use the publicly released Whistle-S model [7] as the backbone,
which is a Conformer [24] based multilingual acoustic model,
pre-trained with connectionist temporal classification (CTC)
[20] on ten CV languages.

We establish two baselines for each language by fine-tuning
(FT) the Whistle-S backbone using weak phoneme labels2 and
subword labels, respectively. They are denoted by “Whistle
Phoneme FT” and “Whistle Subword FT” in Table 1, respec-
tively. The phoneme-based FT model is referred to as Whistle-
S2P. In the setting of “w LM”, a 4-gram word-level language
model is performed in both WFST-based decoding and re-
scoring after beam search with S=4. This crosslingual exper-
iment setup follows Whistle [7].

The Whistle-S2P model is used in combination with the
LLM-P2G to perform the two-step ASR. The LLM-P2G is ob-
tained by fine-tuning the mT5-base [10] over the phoneme data
generated by Whistle-S2P. mT5-base, having 583 million pa-
rameters, is an encoder-decoder Transformer [26], pre-trained
on the mC4 dataset (101 languages, including Polish and Ger-
man). The training details of different methods are as follows.

For applying DANP with beam search, the beam size (K)
is set to be 1, 32 or 64 to generate noisy data (K-beam). For
applying DANP with random sampling, we set the number of
samples (R) to 25,000 for Polish and 500 for German. After de-
duplication, the data size is augmented to about 32 times. Then,
the Whistle-S2P model is frozen and full-parameter fine-tuning
is performed on mT5-base with a fixed learning rate of 3e-4 and
early stopping. The resulting LLM-P2G model is denoted by
“LLM-P2G + DANP” in Table 1. Ablation results with different

2Since the IPA phonetic transcripts are obtained by the LanguageNet
G2P tool, rather than from human annotations [25].



Table 2: Word error rates (WERs) for LLM-P2G with different
settings of DANP. After de-duplication, the data size augmented
by random sampling is about 32 times.

DANP strategy Polish German
w/o LM w LM w/o LM w LM

1-beam 5.71 5.04 14.76 14.67
sampling 5.09 4.93 14.82 14.65
32-beam 4.62 4.36 14.17 14.04
64-beam 4.72 4.36 14.17 13.97

32-beam + sampling 4.51 4.27 14.01 13.91
96-beam + sampling 4.66 4.26 13.86 13.64

+ multiple checkpoints 4.44 4.18 13.86 13.63

hyper-parameters are shown in Table 2.
In TKM training of LLM-P2G, the hyper-parameters K and

n are set to be 32 and 8, respectively. The resulting LLM-P2G
model is denoted by “LLM-P2G + randomized TKM” in Table
1. Top-8 is used in TKM decoding. Ablation results are shown
in Table 3 and 4.

5. Result and Ablation
5.1. Results

The main results are shown in Table 1. For full training data
(130 hours), the main observations are as follows: 1) LLM-
P2G without DANP or TKM shows poor results, because of
information loss (row 1 and 2 vs 3). 2) With DANP, for Pol-
ish, while LLM-P2G does not surpass subword fine-tuning, it
reduces WER by 2.7% compared to phoneme fine-tuning. For
German, it achieves a relative WER reduction of 13.3% and
2.7% compared to the two baselines (rows 1 and 2 vs 4). 3)
LLM-P2G with randomized TKM outperforms all other mod-
els, achieving relative WER reductions of 14.4% and 3.6% for
Polish, and 17.1% and 6.9% for German (rows 1 and 2 vs 5).
The WER reductions are significant, with p-value=1e-4 (3.82
vs 3.68) and 8e-23 (14.01 vs 13.03) for Polish and German re-
spectively, according to matched-pairs significance test [27].

For low-resource (20 hours), similar trends are observed.
Randomized TKM performs the best among different LLM-
P2G settings. However, only for German it achieves a reduction
in relative WER of 6.2% compared to the phoneme fine-tuning
baseline (row 1 vs 5), while for Polish, it fails to achieve sim-
ilar improvements. Presumably, this is because mT5-base is
trained with more pre-training data for German, enabling bet-
ter phoneme-to-grapheme conversion, whereas the limited Pol-
ish pre-training data restrict the performance in low-resource
scenarios [10]. The percentages for German and Polish in
mT5-base pre-training data are 3.05% and 2.15% respectively.
This indicates that while LLM-P2G decoding enjoys a simpler
pipeline than WFST-based decoding and can leverage the pre-
trained capability of LLMs, its performance depends on the
amounts of pre-training data and fine-tuning data.

5.2. Ablation study

DANP strategy. Seven different data augmentation settings are
used in training LLM-P2G. In testing, P2G decoding is based
on the 1-best phoneme sequence generated from S2P, which is
referred to as Best Path Decode. The results are shown in Table
2. First, the performance improves as the amount of augmented
data increases. Second, the combined use of both beam search
and random sampling yields superior results, compared to using

Table 3: Word error rates (WERs) for LLM-P2G with different
settings of TKM training and decoding.

TKM strategy Polish German
w/o LM w LM w/o LM w LM

top-32 16.55 16.12 21.69 21.31
top-8 4.31 3.80 13.58 13.18

rand. 8 of top-32 4.01 3.68 13.44 13.03

Table 4: Comparison of word error rate (WERs) for LLM-P2G,
using different training and decoding strategies. r-TKM denotes
randomized TKM training.

Lang. Train Best Path Decode TKM Decode
w LM w LM

Polish DANP 4.18 4.06
r-TKM 3.99 3.68

German DANP 13.63 13.59
r-TKM 13.42 13.03

either alone. Third, to further promote diversity, we try gener-
ating noisy phonemes by 5 checkpoints saved from training, in
addition to using beam search and sampling. This setting yields
the best DANP result, which is also the result shown in Table 1.

TKM strategy. Different settings are examined for TKM
strategy. As shown in Table 3, the setting with top-32, due to
excessive noise, performs poorly in learning the correct P2G
conversion. In contrast, when the number of candidates are re-
duced to 8, the model surpasses both the two baselines and the
DANP model. Furthermore, random sampling of 8 sequences
out of top-32 strategy achieves sufficient diversity while reduc-
ing noise, and obtains the best performance, which is the result
shown in Table 1 (row 5).

TKM training and decoding. We train LLM-P2G us-
ing DANP or randommized TKM (abbreviated as r-TKM), and
compare the performance of each model with best path decod-
ing (top-1) or TKM decoding (top-K). As shown in Table 4,
compared to DANP training, r-TKM training achieves relative
WER reductions of 4.5% and 9.3% for Polish, and 1.5% and
4.1% for German, using best path decoding and TKM decod-
ing, respectively (row 1 vs 2 and 3 vs 4). Similarly, compared
to best path decoding, TKM decoding reduces relative WER by
2.8% and 7.7% for Polish, and 0.2% and 2.9% for German, un-
der DANP and r-TKM training respectively (column 3 vs 4).
These results demonstrate that the TKM method improves both
model training and decoding performance.

6. Conclusion
In this paper, we propose LLM-P2G for phoneme-based
ASR, which belongs to a two-step ASR architecture, con-
sisting of speech-to-phoneme and LLM-based phoneme-to-
grapheme. Moreover, by incorporating data augmentation with
noisy phonemes (DANP) and randomized top-K marginalized
(TKM) training and decoding, we effectively mitigate perfor-
mance degradation caused by potential information loss in cas-
cading S2P and P2G models. Our experimental results demon-
strate that LLM-P2G not only outperforms WFST-based ASR
systems for crosslingual ASR but also simplifies the decoding
pipeline. The new method is efficient and flexible in leveraging
acoustic and linguistic knowledge from large pre-trained mod-
els, offering a promising direction for future research.
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