Interpretable and flexible non-intrusive reduced-order models using reproducing kernel Hilbert spaces

Alejandro N. Diaz Corresponding author. E-mail: andiaz@sandia.gov. Sandia National Laboratories Shane A. McQuarrie Sandia National Laboratories John T. Tencer Sandia National Laboratories Patrick J. Blonigan Sandia National Laboratories
Abstract

This paper develops an interpretable, non-intrusive reduced-order modeling technique using regularized kernel interpolation. Existing non-intrusive approaches approximate the dynamics of a reduced-order model (ROM) by solving a data-driven least-squares regression problem for low-dimensional matrix operators. Our approach instead leverages regularized kernel interpolation, which yields an optimal approximation of the ROM dynamics from a user-defined reproducing kernel Hilbert space. We show that our kernel-based approach can produce interpretable ROMs whose structure mirrors full-order model structure by embedding judiciously chosen feature maps into the kernel. The approach is flexible and allows a combination of informed structure through feature maps and closure terms via more general nonlinear terms in the kernel. We also derive a computable a posteriori error bound that combines standard error estimates for intrusive projection-based ROMs and kernel interpolants. The approach is demonstrated in several numerical experiments that include comparisons to operator inference using both proper orthogonal decomposition and quadratic manifold dimension reduction.

Keywords: data-driven model reduction, kernel interpolation, feature maps, interpretable reduced-order model, error bounds, quadratic manifolds

1 Introduction

Large-scale numerical simulations are a crucial component of the engineering design process. For many applications, the complexity of the underlying physics and the required fidelity make such simulations highly computationally expensive, which renders many-query simulation tasks such as uncertainty quantification and design optimization infeasible. Model reduction techniques seek to mitigate high computation costs in numerical simulations by systematically extracting the relevant dynamics of a large-scale system, called the full-order model (FOM), and constructing a low-dimensional, computationally efficient reduced-order model (ROM), which can be used as a substitute for the FOM in many-query design tasks. Two appealing features of ROMs over other surrogate modeling techniques are that they aim to incorporate underlying physics from the FOM and often come equipped with rigorous error bounds. In this paper, we propose a novel model reduction framework that uses regularized kernel interpolation to compute data-driven ROMs that are interpretable, flexible, and have rigorous error estimates.

Classical projection-based model reduction techniques construct ROMs by identifying a low-dimensional linear subspace that best represents the FOM dynamics in some sense, then projecting the governing equations onto the subspace. Examples of projection-based approaches include balanced truncation [1, 7]; interpolatory projections [2, 16]; moment-matching [6, 22]; and proper orthogonal decomposition (POD) [23, 25], in which the optimal low-dimensional subspace is defined as the span of the leading left singular vectors of a representative set of state data. In recent years, several dimension reduction approaches have been proposed that aim to overcome approximation limitations of linear subspaces, including nonlinear manifolds (NMs) using autoencoders [14, 15, 28, 32, 44], quadratic manifolds (QMs) [4, 18, 19, 54], and the projection-based ROM + artificial neural network (PROM-ANN) approach [5]. These strategies are especially beneficial when applied to problems with slowly decaying Kolmogorov n𝑛nitalic_n-width, such as transport-dominated problems or problems with sharp gradients [37, 39]. In many cases, these nonlinear dimension reduction approaches can still be used to produce projection-based ROMs by inserting the state approximation into the governing FOM and projecting the residual by a test basis.

Projection-based methods have enjoyed success in a number of applications. However, a common disadvantage is that they require intrusive access to code of a given FOM. This is often an infeasible request when the FOM is defined through legacy or commercial code, and hence an intrusive projection-based ROM is unobtainable. Several so-called non-intrusive model reduction approaches have been developed recently to overcome this difficulty. These methods apply a dimension reduction technique, such as POD or an autoencoder, to project pre-computed snapshot data onto a low-dimensional latent space and learn a function that models the system dynamics within the latent space. For example, dynamic mode decomposition (DMD) [31, 46, 51, 52, 58] approximates a dynamical system by fitting a least-squares optimal linear operator to time series data. This approach has been extended to approximate nonlinear dynamical systems using Koopman operator theory, but selecting observables that yield approximately linear dynamics can be challenging [13, 35, 45, 61]. Operator inference (OpInf) [20, 29, 40] is a related method that constrains the learnable dynamics to have the same structure (e.g, polynomial) as a projection-based ROM, thereby producing interpretable nonlinear ROMs. In this method, reduced-order operators are computed by solving a linear least-squares regression that minimizes the residual of the desired reduced dynamics. Non-polynomial nonlinearities can often be incorporated by first applying a lifting transformation to the training data, then learning a polynomial ROM [43]. By contrast, neural network (NN)-based approaches [10, 33, 47, 48] typically use autoencoders for the dimension reduction and model the reduced dynamics using a NN. While these methods are very flexible in that they can model dynamics with arbitrary structure, the resulting ROMs are not interpretable. Another method, latent space dynamics identification (LaSDI) [11, 12, 17, 24, 38], can be viewed as a hybrid of OpInf and NN-based approaches that typically uses autoencoder-based dimension reduction and learns reduced-order dynamics by solving a least-squares regression problem for coefficient matrices corresponding to a library of nonlinear candidates functions. This approach is related to the SINDy algorithm [27] but does not enforce a sparsity requirement. The library of candidate functions for LaSDI is typically chosen to be polynomial, which results in solving a similar least-squares regression problem to OpInf when learning the latent dynamics. Unlike OpInf, while the resulting ROM structure is interpretable, a natural structure for the ROM dynamics cannot be deduced a priori since autoencoder-based dimension reduction does not preserve structure from the FOM. In each of these approaches, error estimates for the resulting ROMs are limited, with the exception of the recent thermodynamics-based LaSDI approach [38].

Our proposed kernel-based non-intrusive ROMs, which we call “Kernel ROMs”, share similarities with the aforementioned approaches while overcoming some noticeable drawbacks. Like other approaches, we begin by applying POD or QM dimension reduction to a set of training snapshots and learn a function that approximates the system dynamics within a latent space. However, instead of modeling the ROM dynamics as a polynomial and learning the polynomial coefficients through least-squares regression as in OpInf and LaSDI, we use regularized kernel interpolation [36, 49, 50] to model the reduced dynamics with a function belonging to a user-defined reproducing kernel Hilbert space (RKHS). The structure of the learned function depends on the positive-definite kernel that defines the RKHS. For example, if the governing FOM has a polynomial structure, we can use a kernel induced by a feature map to compute ROM dynamics that share the same polynomial structure. On the other hand, if the FOM dynamics have unknown or only partially known structure, a more generic nonlinear kernel can be used to model the unknown part of the ROM dynamics. In this sense, our proposed approach has a natural way of incorporating closure terms into the ROM dynamics. While kernel methods have been used to emulate reduced dynamics in previous work [41, 62], these approaches are intrusive in that they assume that the FOM dynamics can be sampled explicitly, and they do not demonstrate a way to inject explicit structure into the learned ROM. The authors in [3] use kernel methods to augment a DMD model, resulting in a fully data-driven surrogate model, and implicitly inject structure by modeling nonlinear terms using polynomial kernels. While this approach is similar to ours, we focus on constructing non-intrusive ROMs, and can model nonlinear terms explicitly using feature map kernels. In summary, the proposed approach is entirely data-driven, can produce interpretable and flexible ROMs, and yields computable a posteriori error bounds between the non-intrusive ROM and FOM solutions.

The outline of this paper is as follows. We first review essential aspects of regularized kernel interpolation in Section 2. We then review intrusive projection-based model reduction in Section 3, with a focus on quadratic dimension reduction and the resulting model structure. Section 4 details the application of regularization kernel interpolation in the non-intrusive model reduction setting, and a corresponding a posteriori error analysis is provided in Section 5. We demonstrate our proposed approach numerically on several examples in Section 6, including comparisons to OpInf and intrusive ROMs when possible. The results show that our proposed approach can accommodate either POD or QM dimension reduction and produces comparable results to OpInf while also yielding a computable error bound. Finally, Section 7 provides a few concluding remarks and identifies potential avenues for future development.

2 Regularized kernel interpolation

This section reviews the essentials of regularized kernel interpolation, the key ingredient for our non-intrusive model reduction approach. Section 2.1 reviews scalar-valued interpolation, which is extended to vector-valued interpolation in Section 2.2. Scenario-specific kernel design is then discussed in Section 2.3.

2.1 Scalar-valued kernel interpolation

We begin with a review of regularized kernel interpolation for scalar-valued functions. By the Moore–Aronszajn Theorem (see, e.g., [49, Theorem 3.10]), a positive-definite kernel function defines a unique Hilbert space with desirable properties. This result leads to the Representer Theorem — the key result used for computing an optimal interpolant in an RKHS — as well as a pointwise error bound on the interpolant.

Definition 2.1 (Positive-definite kernels).

A function K:×nxnxK:{}^{n_{x}}\times{}^{n_{x}}\to\realitalic_K : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT × start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → is a (real-valued) kernel function if it is symmetric, i.e., K(𝐱,𝐱)=K(𝐱,𝐱)𝐾𝐱superscript𝐱𝐾superscript𝐱𝐱K(\mathbf{x},\mathbf{x}^{\prime})=K(\mathbf{x}^{\prime},\mathbf{x})italic_K ( bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_K ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , bold_x ) for all 𝐱,𝐱nx\mathbf{x},\mathbf{x}^{\prime}\in{}^{n_{x}}bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. A kernel function K𝐾Kitalic_K is said to be positive definite if for any matrix 𝐗=[𝐱1𝐱m]nx×m\mathbf{X}=[~{}\mathbf{x}_{1}~{}~{}\cdots~{}~{}\mathbf{x}_{m}~{}]\in{}^{n_{x}% \times m}bold_X = [ bold_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ bold_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_m end_FLOATSUPERSCRIPT with pairwise distinct columns, the kernel matrix K(𝐗,𝐗)m×mK(\mathbf{X},\mathbf{X})\in{}^{m\times m}italic_K ( bold_X , bold_X ) ∈ start_FLOATSUPERSCRIPT italic_m × italic_m end_FLOATSUPERSCRIPT with entries K(𝐗,𝐗)ij=K(𝐱i,𝐱j)𝐾subscript𝐗𝐗𝑖𝑗𝐾subscript𝐱𝑖subscript𝐱𝑗K(\mathbf{X},\mathbf{X})_{ij}=K(\mathbf{x}_{i},\mathbf{x}_{j})italic_K ( bold_X , bold_X ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_K ( bold_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) is positive semi-definite.

Definition 2.2 (RKHS).

Let K:×nxnxK:{}^{n_{x}}\times{}^{n_{x}}\to\realitalic_K : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT × start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → be a positive-definite kernel function. Consider the pre-Hilbert space of functions

K0()nx={v:nx|m,𝝎,m{𝐱}j=1msuch thatnxv(𝐱)=j=1mωjK(𝐱j,𝐱)}.\displaystyle{\cal H}_{K}^{0}({}^{n_{x}})=\left\{v:{}^{n_{x}}\to\real~{}\bigg{% |}~{}\exists\,m\in\mathbb{N},\,{\boldsymbol{\omega}}\in{}^{m},\,\left\{\mathbf% {x}\right\}_{j=1}^{m}\subset{}^{n_{x}}~{}\textup{such that}~{}v(\mathbf{x})=% \sum_{j=1}^{m}\omega_{j}K(\mathbf{x}_{j},\mathbf{x})\right\}.caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) = { italic_v : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → | ∃ italic_m ∈ blackboard_N , bold_italic_ω ∈ start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT , { bold_x } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT such that italic_v ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x ) } .

The reproducing kernel Hilbert space (RKHS) K()nx{\cal H}_{K}({}^{n_{x}})caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) induced by the kernel K𝐾Kitalic_K is the (unique) completion of K0()nx{\cal H}_{K}^{0}({}^{n_{x}})caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) with respect to the norm K()nx,K()nx1/2\left\|\cdot\right\|_{{\cal H}_{K}({}^{n_{x}})}\coloneqq\left\langle\cdot,% \cdot\right\rangle_{{\cal H}_{K}({}^{n_{x}})}^{1/2}∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) end_POSTSUBSCRIPT ≔ ⟨ ⋅ , ⋅ ⟩ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT induced by the inner product

v,vK()dj=1mk=1mωjωkK(𝐱j,𝐱k),\displaystyle\left\langle v,v^{\prime}\right\rangle_{{\cal H}_{K}({}^{d})}% \coloneqq\sum_{j=1}^{m}\sum_{k=1}^{m^{\prime}}\omega_{j}\omega_{k}^{\prime}K(% \mathbf{x}_{j},\mathbf{x}_{k}^{\prime}),⟨ italic_v , italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟩ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT italic_d end_FLOATSUPERSCRIPT ) end_POSTSUBSCRIPT ≔ ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

in which v(𝐱)=j=1mωjK(𝐱j,𝐱)𝑣𝐱superscriptsubscript𝑗1𝑚subscript𝜔𝑗𝐾subscript𝐱𝑗𝐱v(\mathbf{x})=\sum_{j=1}^{m}\omega_{j}K(\mathbf{x}_{j},\mathbf{x})italic_v ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x ) and v(𝐱)=j=1mωkK(𝐱k,𝐱)superscript𝑣𝐱superscriptsubscript𝑗1superscript𝑚superscriptsubscript𝜔𝑘𝐾superscriptsubscript𝐱𝑘𝐱v^{\prime}(\mathbf{x})=\sum_{j=1}^{m^{\prime}}\omega_{k}^{\prime}K(\mathbf{x}_% {k}^{\prime},\mathbf{x})italic_v start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , bold_x ).

For an ordered collection of pairwise-distinct vectors {𝐱j}j=1mnx\{\mathbf{x}_{j}\}_{j=1}^{m}\subset{}^{n_{x}}{ bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, we use K(𝐗,𝐗)𝐾𝐗𝐗K(\mathbf{X},\mathbf{X})italic_K ( bold_X , bold_X ) to denote m×m𝑚𝑚m\times mitalic_m × italic_m kernel matrix of Definition 2.1 and define the vector K(𝐗,𝐱)=[K(𝐱1,𝐱)K(𝐱m,𝐱)]𝖳mK(\mathbf{X},\mathbf{x})=[~{}K(\mathbf{x}_{1},\mathbf{x})~{}~{}\cdots~{}~{}K(% \mathbf{x}_{m},\mathbf{x})~{}]^{\mathsf{T}}\in{}^{m}italic_K ( bold_X , bold_x ) = [ italic_K ( bold_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_x ) ⋯ italic_K ( bold_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , bold_x ) ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∈ start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT. To simplify notation, we will write Ksubscript𝐾{\cal H}_{K}caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT for K()nx{\cal H}_{K}({}^{n_{x}})caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT ) when it is understood that K𝐾Kitalic_K is defined over ×nxnx{}^{n_{x}}\times{}^{n_{x}}start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT × start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. Importantly, for v(𝐱)=j=1mωjK(𝐱j,𝐱)𝑣𝐱superscriptsubscript𝑗1𝑚subscript𝜔𝑗𝐾subscript𝐱𝑗𝐱v(\mathbf{x})=\sum_{j=1}^{m}\omega_{j}K(\mathbf{x}_{j},\mathbf{x})italic_v ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x ), the induced RKHS norm vKsubscriptnorm𝑣subscript𝐾\left\|v\right\|_{{\cal H}_{K}}∥ italic_v ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT can be computed efficiently via the corresponding kernel matrix,

vK2=j=1mk=1mωjωkK(𝐱j,𝐱k)=𝝎𝖳K(𝐗,𝐗)𝝎.superscriptsubscriptnorm𝑣subscript𝐾2superscriptsubscript𝑗1𝑚superscriptsubscript𝑘1𝑚subscript𝜔𝑗subscript𝜔𝑘𝐾subscript𝐱𝑗subscript𝐱𝑘superscript𝝎𝖳𝐾𝐗𝐗𝝎\displaystyle\left\|v\right\|_{{\cal H}_{K}}^{2}=\sum_{j=1}^{m}\sum_{k=1}^{m}% \omega_{j}\omega_{k}K(\mathbf{x}_{j},\mathbf{x}_{k})={\boldsymbol{\omega}}^{% \mathsf{T}}K(\mathbf{X},\mathbf{X}){\boldsymbol{\omega}}.∥ italic_v ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = bold_italic_ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_X ) bold_italic_ω . (2.1)

We now state a main result from RKHS theory that is fundamental for our method.

Definition 2.3 (Regularized kernel interpolant).

Let v:nxv:{}^{n_{x}}\to\realitalic_v : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT →, {𝐱j}j=1mnx\left\{\mathbf{x}_{j}\right\}_{j=1}^{m}\subset{}^{n_{x}}{ bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT be pairwise distinct, and denote yj=v(𝐱j)subscript𝑦𝑗𝑣subscript𝐱𝑗y_{j}=v(\mathbf{x}_{j})italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_v ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ). For a given RKHS Ksubscript𝐾{\cal H}_{K}caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT and a regularization parameter γ0𝛾0\gamma\geq 0italic_γ ≥ 0, a regularized interpolant svγKsuperscriptsubscript𝑠𝑣𝛾subscript𝐾s_{v}^{\gamma}\in{\cal H}_{K}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT of v𝑣vitalic_v is a solution to the minimization problem

minsKj=1m(yjs(𝐱j))2+γsK2.subscript𝑠subscript𝐾superscriptsubscript𝑗1𝑚superscriptsubscript𝑦𝑗𝑠subscript𝐱𝑗2𝛾superscriptsubscriptnorm𝑠subscript𝐾2\displaystyle\min_{s\in{\cal H}_{K}}\;\sum_{j=1}^{m}(y_{j}-s(\mathbf{x}_{j}))^% {2}+\gamma\left\|s\right\|_{{\cal H}_{K}}^{2}.roman_min start_POSTSUBSCRIPT italic_s ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_s ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ italic_s ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (2.2)
Theorem 2.1 (Representer Theorem).

The minimization problem eq. 2.2 has a solution of the form

svγ(𝐱)=j=1mωjK(𝐱j,𝐱)=𝝎𝖳K(𝐗,𝐱),superscriptsubscript𝑠𝑣𝛾𝐱superscriptsubscript𝑗1𝑚subscript𝜔𝑗𝐾subscript𝐱𝑗𝐱superscript𝝎𝖳𝐾𝐗𝐱\displaystyle s_{v}^{\gamma}(\mathbf{x})=\sum_{j=1}^{m}\omega_{j}K(\mathbf{x}_% {j},\mathbf{x})={\boldsymbol{\omega}}^{\mathsf{T}}K(\mathbf{X},\mathbf{x}),italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x ) = bold_italic_ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) , (2.3a)
where the coefficient vector 𝝎=[ω1ωm]𝖳m{\boldsymbol{\omega}}=[~{}\omega_{1}~{}~{}\cdots~{}~{}\omega_{m}~{}]^{\mathsf{% T}}\in{}^{m}bold_italic_ω = [ italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ italic_ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∈ start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT solves the m×m𝑚𝑚m\times mitalic_m × italic_m linear system
(K(𝐗,𝐗)+γ𝐈)𝝎=[y1ym].𝐾𝐗𝐗𝛾𝐈𝝎delimited-[]subscript𝑦1subscript𝑦𝑚\displaystyle\big{(}K(\mathbf{X},\mathbf{X})+\gamma\mathbf{I}\big{)}{% \boldsymbol{\omega}}=\left[\begin{array}[]{c}y_{1}\\ \vdots\\ y_{m}\end{array}\right].( italic_K ( bold_X , bold_X ) + italic_γ bold_I ) bold_italic_ω = [ start_ARRAY start_ROW start_CELL italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] . (2.3e)

Moreover, if K𝐾Kitalic_K is strictly positive definite, then svγsuperscriptsubscript𝑠𝑣𝛾s_{v}^{\gamma}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT is the unique minimizer of eq. 2.2.

See, e.g., [50, Theorem 9.3] for a proof of Theorem 2.1. A key observation from Theorem 2.1 is that a solution to the infinite-dimensional minimization problem eq. 2.2 can be obtained by solving the finite-dimensional linear system eq. 2.3e.

Without regularization (γ=0𝛾0\gamma=0italic_γ = 0), the function sv0Ksuperscriptsubscript𝑠𝑣0subscript𝐾s_{v}^{0}\in{\cal H}_{K}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT exactly interpolates the data, i.e., sv(𝐱j)=yjsubscript𝑠𝑣subscript𝐱𝑗subscript𝑦𝑗s_{v}(\mathbf{x}_{j})=y_{j}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT for each j=1,,m𝑗1𝑚j=1,\dots,mitalic_j = 1 , … , italic_m. Moreover, sv0superscriptsubscript𝑠𝑣0s_{v}^{0}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT satisfies the following error bound.

Theorem 2.2 (Power function error bound).

If vK𝑣subscript𝐾v\in{\cal H}_{K}italic_v ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT and sv0Ksuperscriptsubscript𝑠𝑣0subscript𝐾s_{v}^{0}\in{\cal H}_{K}italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT is an (unregularized) interpolant of v𝑣vitalic_v corresponding to the pairwise distinct data {𝐱i}j=1mnx\left\{\mathbf{x}_{i}\right\}_{j=1}^{m}\subset{}^{n_{x}}{ bold_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and yj=v(𝐱j)subscript𝑦𝑗𝑣subscript𝐱𝑗absenty_{j}=v(\mathbf{x}_{j})\in\realitalic_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_v ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∈, then

|v(𝐱)sv0(𝐱)|PK,𝐗(𝐱)vK𝐱,d\displaystyle|v(\mathbf{x})-s_{v}^{0}(\mathbf{x})|\leq P_{K,\mathbf{X}}(% \mathbf{x})\left\|v\right\|_{{\cal H}_{K}}\qquad\forall\;\mathbf{x}\in{}^{d},| italic_v ( bold_x ) - italic_s start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) | ≤ italic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT ( bold_x ) ∥ italic_v ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∀ bold_x ∈ start_FLOATSUPERSCRIPT italic_d end_FLOATSUPERSCRIPT , (2.4a)
where PK,𝐗:nxP_{K,\mathbf{X}}:{}^{n_{x}}\to\realitalic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → is the so-called power function defined by
PK,𝐗(𝐱)=K(𝐱,𝐱)K(𝐗,𝐱)𝖳K(𝐗,𝐗)1K(𝐗,𝐱).subscript𝑃𝐾𝐗𝐱𝐾𝐱𝐱𝐾superscript𝐗𝐱𝖳𝐾superscript𝐗𝐗1𝐾𝐗𝐱\displaystyle P_{K,\mathbf{X}}(\mathbf{x})=\sqrt{K(\mathbf{x},\mathbf{x})-K(% \mathbf{X},\mathbf{x})^{\mathsf{T}}K(\mathbf{X},\mathbf{X})^{-1}K(\mathbf{X},% \mathbf{x})}.italic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT ( bold_x ) = square-root start_ARG italic_K ( bold_x , bold_x ) - italic_K ( bold_X , bold_x ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_X ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) end_ARG . (2.4b)

See, e.g., [49, Thm 4.9] for a proof of the bound eq. 2.4a and [49, Prop. 4.11, Prop. 4.12] for the characterization eq. 2.4b of the power function. While this error bound is for the unregularized, fully interpolatory case, it is still useful in practice for the regularized case when γ>0𝛾0\gamma>0italic_γ > 0 is small.

2.2 Vector-valued kernel interpolation

Kernel interpolation can be readily extended to vector-valued functions. The simple extension presented here, which is sufficient for our use case, is a special case of a more general extension relying on matrix-valued kernels (see, e.g., [36, 50]).

Consider the vector-valued function 𝐯:nxny\mathbf{v}:{}^{n_{x}}\to{}^{n_{y}}bold_v : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, ny>1subscript𝑛𝑦1n_{y}>1italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT > 1. As before, let {𝐱j}j=1mnx\left\{\mathbf{x}_{j}\right\}_{j=1}^{m}\subset{}^{n_{x}}{ bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT be pairwise distinct and suppose 𝐲j=𝐯(𝐱j)ny\mathbf{y}_{j}=\mathbf{v}(\mathbf{x}_{j})\in{}^{n_{y}}bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = bold_v ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT for j=1,,m𝑗1𝑚j=1,\ldots,mitalic_j = 1 , … , italic_m. Also let vi:nxv_{i}:{}^{n_{x}}\to\realitalic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → denote the i𝑖iitalic_i-th component of 𝐯𝐯\mathbf{v}bold_v, yj,isubscript𝑦𝑗𝑖y_{j,i}italic_y start_POSTSUBSCRIPT italic_j , italic_i end_POSTSUBSCRIPT be the i𝑖iitalic_i-th component of 𝐲jsubscript𝐲𝑗\mathbf{y}_{j}bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT, and define the input and output data matrices

𝐗𝐗\displaystyle\mathbf{X}bold_X =[𝐱1𝐱m],nx×m\displaystyle=[~{}\mathbf{x}_{1}~{}~{}\cdots~{}~{}\mathbf{x}_{m}~{}]\in{}^{n_{% x}\times m},= [ bold_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ bold_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_m end_FLOATSUPERSCRIPT , 𝐘𝐘\displaystyle\mathbf{Y}bold_Y =[𝐲1𝐲m].ny×m\displaystyle=[~{}\mathbf{y}_{1}~{}~{}\cdots~{}~{}\mathbf{y}_{m}~{}]\in{}^{n_{% y}\times m}.= [ bold_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋯ bold_y start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_m end_FLOATSUPERSCRIPT . (2.5)

We construct a vector-valued regularized kernel interpolant 𝐬𝐯γsuperscriptsubscript𝐬𝐯𝛾\mathbf{s}_{\mathbf{v}}^{\gamma}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT by fitting scalar-valued kernel interpolants to each component visubscript𝑣𝑖v_{i}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT of 𝐯𝐯\mathbf{v}bold_v. Consequently, 𝐬𝐯γsuperscriptsubscript𝐬𝐯𝛾\mathbf{s}_{\mathbf{v}}^{\gamma}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT is an element of the nysubscript𝑛𝑦n_{y}italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT-fold Cartesian product KnyK××Ksuperscriptsubscript𝐾subscript𝑛𝑦subscript𝐾subscript𝐾{\cal H}_{K}^{n_{y}}\coloneqq{\cal H}_{K}\times\dots\times{\cal H}_{K}caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ≔ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT × ⋯ × caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT, which has the inner product 𝐮,𝐰Kny=i=1nyui,wiKsubscript𝐮𝐰superscriptsubscript𝐾subscript𝑛𝑦superscriptsubscript𝑖1subscript𝑛𝑦subscriptsubscript𝑢𝑖subscript𝑤𝑖subscript𝐾\left\langle\mathbf{u},\mathbf{w}\right\rangle_{{\cal H}_{K}^{n_{y}}}=\sum_{i=% 1}^{n_{y}}\left\langle u_{i},w_{i}\right\rangle_{{\cal H}_{K}}⟨ bold_u , bold_w ⟩ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ⟨ italic_u start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟩ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT for all 𝐮=(u1,,uny)Kny𝐮subscript𝑢1subscript𝑢subscript𝑛𝑦superscriptsubscript𝐾subscript𝑛𝑦\mathbf{u}=(u_{1},\ldots,u_{n_{y}})\in{\cal H}_{K}^{n_{y}}bold_u = ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and 𝐰=(w1,,wny)Kny𝐰subscript𝑤1subscript𝑤subscript𝑛𝑦superscriptsubscript𝐾subscript𝑛𝑦\mathbf{w}=(w_{1},\ldots,w_{n_{y}})\in{\cal H}_{K}^{n_{y}}bold_w = ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_w start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. The regularized kernel interpolant constructed in this manner solves the optimization problem

min𝐬Knyj=1m𝐲j𝐬(𝐱j)22+γ𝐬Kny2,subscript𝐬superscriptsubscript𝐾subscript𝑛𝑦superscriptsubscript𝑗1𝑚superscriptsubscriptnormsubscript𝐲𝑗𝐬subscript𝐱𝑗22𝛾superscriptsubscriptnorm𝐬superscriptsubscript𝐾subscript𝑛𝑦2\displaystyle\min_{\mathbf{s}\in{\cal H}_{K}^{n_{y}}}\;\sum_{j=1}^{m}\left\|% \mathbf{y}_{j}-\mathbf{s}(\mathbf{x}_{j})\right\|_{2}^{2}+\gamma\left\|\mathbf% {s}\right\|_{{\cal H}_{K}^{n_{y}}}^{2},roman_min start_POSTSUBSCRIPT bold_s ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ∥ bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - bold_s ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ bold_s ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (2.6)

where 2\left\|\cdot\right\|_{2}∥ ⋅ ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT denotes the Euclidean 2222-norm and Kny2=,Kny\left\|\cdot\right\|_{{\cal H}_{K}^{n_{y}}}^{2}=\left\langle\cdot,\cdot\right% \rangle_{{\cal H}_{K}^{n_{y}}}∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ⟨ ⋅ , ⋅ ⟩ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. To see this, note that the objective function in eq. 2.6 can be rewritten as

j=1m𝐲j𝐬(𝐱j)22+γ𝐬Kny2=i=1ny(j=1m(yj,isi(𝐱j))2+γsiK2),𝐬(𝐱)=[s1(𝐱)sny(𝐱)],formulae-sequencesuperscriptsubscript𝑗1𝑚superscriptsubscriptnormsubscript𝐲𝑗𝐬subscript𝐱𝑗22𝛾superscriptsubscriptnorm𝐬superscriptsubscript𝐾subscript𝑛𝑦2superscriptsubscript𝑖1subscript𝑛𝑦superscriptsubscript𝑗1𝑚superscriptsubscript𝑦𝑗𝑖subscript𝑠𝑖subscript𝐱𝑗2𝛾superscriptsubscriptnormsubscript𝑠𝑖subscript𝐾2𝐬𝐱delimited-[]subscript𝑠1𝐱subscript𝑠subscript𝑛𝑦𝐱\displaystyle\sum_{j=1}^{m}\left\|\mathbf{y}_{j}-\mathbf{s}(\mathbf{x}_{j})% \right\|_{2}^{2}+\gamma\left\|\mathbf{s}\right\|_{{\cal H}_{K}^{n_{y}}}^{2}=% \sum_{i=1}^{n_{y}}\left(\sum_{j=1}^{m}\left(y_{j,i}-s_{i}(\mathbf{x}_{j})% \right)^{2}+\gamma\left\|s_{i}\right\|_{{\cal H}_{K}}^{2}\right),\quad\mathbf{% s}(\mathbf{x})=\left[\begin{array}[]{c}s_{1}(\mathbf{x})\\ \vdots\\ s_{n_{y}}(\mathbf{x})\end{array}\right],∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ∥ bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - bold_s ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ bold_s ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_j , italic_i end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , bold_s ( bold_x ) = [ start_ARRAY start_ROW start_CELL italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_x ) end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_s start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( bold_x ) end_CELL end_ROW end_ARRAY ] ,

and therefore eq. 2.6 decouples into nysubscript𝑛𝑦{n_{y}}italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT independent scalar-valued regularized interpolation problems:

min𝐬iKj=1m(yj,isi(𝐱j))2+γsiK2,i=1,,ny.formulae-sequencesubscriptsubscript𝐬𝑖subscript𝐾superscriptsubscript𝑗1𝑚superscriptsubscript𝑦𝑗𝑖subscript𝑠𝑖subscript𝐱𝑗2𝛾superscriptsubscriptnormsubscript𝑠𝑖subscript𝐾2𝑖1subscript𝑛𝑦\displaystyle\min_{\mathbf{s}_{i}\in{\cal H}_{K}}\;\sum_{j=1}^{m}(y_{j,i}-s_{i% }(\mathbf{x}_{j}))^{2}+\gamma\left\|s_{i}\right\|_{{\cal H}_{K}}^{2},\qquad i=% 1,\dots,n_{y}.roman_min start_POSTSUBSCRIPT bold_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_j , italic_i end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_i = 1 , … , italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT . (2.7)

Theorem 2.1 can then be applied to each subproblem to yield scalar-valued interpolants sviγsuperscriptsubscript𝑠subscript𝑣𝑖𝛾s_{v_{i}}^{\gamma}italic_s start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT of the form

sviγ(𝐱)=j=1mωi,jK(𝐱j,𝐱)=𝝎i𝖳K(𝐗,𝐱),superscriptsubscript𝑠subscript𝑣𝑖𝛾𝐱superscriptsubscript𝑗1𝑚subscript𝜔𝑖𝑗𝐾subscript𝐱𝑗𝐱superscriptsubscript𝝎𝑖𝖳𝐾𝐗𝐱\displaystyle s_{v_{i}}^{\gamma}(\mathbf{x})=\sum_{j=1}^{m}\omega_{i,j}K(% \mathbf{x}_{j},\mathbf{x})={\boldsymbol{\omega}}_{i}^{\mathsf{T}}K(\mathbf{X},% \mathbf{x}),italic_s start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT italic_K ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_x ) = bold_italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) , (2.8a)
where each coefficient vector 𝝎1,,𝝎nym{\boldsymbol{\omega}}_{1},\ldots,{\boldsymbol{\omega}}_{n_{y}}\in{}^{m}bold_italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , bold_italic_ω start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT solves an m×m𝑚𝑚m\times mitalic_m × italic_m linear system,
(K(𝐗,𝐗)+γ𝐈)𝝎i=[yi,1yi,m],i=1,,p.formulae-sequence𝐾𝐗𝐗𝛾𝐈subscript𝝎𝑖delimited-[]subscript𝑦𝑖1subscript𝑦𝑖𝑚𝑖1𝑝\displaystyle\big{(}K(\mathbf{X},\mathbf{X})+\gamma\mathbf{I}\big{)}{% \boldsymbol{\omega}}_{i}=\left[\begin{array}[]{c}y_{i,1}\\ \vdots\\ y_{i,m}\end{array}\right],\quad i=1,\ldots,p.( italic_K ( bold_X , bold_X ) + italic_γ bold_I ) bold_italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = [ start_ARRAY start_ROW start_CELL italic_y start_POSTSUBSCRIPT italic_i , 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUBSCRIPT italic_i , italic_m end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] , italic_i = 1 , … , italic_p . (2.8e)

As before, γ0𝛾0\gamma\geq 0italic_γ ≥ 0 is a given regularization parameter. An interpolant of 𝐯𝐯\mathbf{v}bold_v can then be defined by

𝐬𝐯γ(𝐱)=[sv1γ(𝐱)svnyγ(𝐱)]𝖳.superscriptsubscript𝐬𝐯𝛾𝐱superscriptdelimited-[]superscriptsubscript𝑠subscript𝑣1𝛾𝐱superscriptsubscript𝑠subscript𝑣subscript𝑛𝑦𝛾𝐱𝖳\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})=[~{}s_{v_{1}}^{% \gamma}(\mathbf{x})~{}~{}\cdots~{}~{}s_{v_{n_{y}}}^{\gamma}(\mathbf{x})~{}]^{% \mathsf{T}}.bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = [ italic_s start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) ⋯ italic_s start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT .

We summarize with the following corollary of Theorem 2.1 and a straightforward extension of Theorem 2.2.

Corollary 2.1 (Vector Representer Theorem).

The minimization problem eq. 2.6 has a solution of the form

𝐬𝐯γ(𝐱)=𝛀𝖳K(𝐗,𝐱),superscriptsubscript𝐬𝐯𝛾𝐱superscript𝛀𝖳𝐾𝐗𝐱\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})={\boldsymbol{\Omega}% }^{\mathsf{T}}K(\mathbf{X},\mathbf{x}),bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) , (2.9a)
where the coefficient matrix 𝛀m×ny{\boldsymbol{\Omega}}\in{}^{m\times{n_{y}}}bold_Ω ∈ start_FLOATSUPERSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT solves the linear system
(K(𝐗,𝐗)+γ𝐈)𝛀=𝐘𝖳.𝐾𝐗𝐗𝛾𝐈𝛀superscript𝐘𝖳\displaystyle\big{(}K(\mathbf{X},\mathbf{X})+\gamma\mathbf{I}\big{)}{% \boldsymbol{\Omega}}=\mathbf{Y}^{\mathsf{T}}.( italic_K ( bold_X , bold_X ) + italic_γ bold_I ) bold_Ω = bold_Y start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT . (2.9b)

Moreover, if K𝐾Kitalic_K is strictly positive definite, s𝐯γsuperscriptsubscript𝑠𝐯𝛾s_{\mathbf{v}}^{\gamma}italic_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT is the unique minimizer.

Corollary 2.2.

Let 𝐯Kny𝐯superscriptsubscript𝐾subscript𝑛𝑦\mathbf{v}\in{\cal H}_{K}^{n_{y}}bold_v ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and 𝐌ny×ny\mathbf{M}\in{}^{{n_{y}}\times{n_{y}}}bold_M ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT be a symmetric positive definite weighting matrix with Cholesky factorization 𝐌=𝐋𝐋𝖳𝐌superscript𝐋𝐋𝖳\mathbf{M}=\mathbf{L}\mathbf{L}^{\mathsf{T}}bold_M = bold_LL start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT. If 𝐬𝐯0Knysuperscriptsubscript𝐬𝐯0superscriptsubscript𝐾subscript𝑛𝑦\mathbf{s}_{\mathbf{v}}^{0}\in{\cal H}_{K}^{n_{y}}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is an (unregularized) vector-valued interpolant of 𝐯𝐯\mathbf{v}bold_v of the form eq. 2.9 corresponding to the pairwise distinct data {𝐱i}i=1mnx\left\{\mathbf{x}_{i}\right\}_{i=1}^{m}\subset{}^{n_{x}}{ bold_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐲i=𝐯(𝐱i)ny\mathbf{y}_{i}=\mathbf{v}(\mathbf{x}_{i})\in{}^{n_{y}}bold_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = bold_v ( bold_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, then

𝐯(𝐱)𝐬𝐯0(𝐱)𝐌PK,𝐗(𝐱)𝐋2𝐯Kny𝐱.nx\displaystyle\left\|\mathbf{v}(\mathbf{x})-\mathbf{s}_{\mathbf{v}}^{0}(\mathbf% {x})\right\|_{\mathbf{M}}\leq P_{K,\mathbf{X}}(\mathbf{x})\left\|\mathbf{L}% \right\|_{2}\left\|\mathbf{v}\right\|_{{\cal H}_{K}^{n_{y}}}\qquad\forall\;% \mathbf{x}\in{}^{n_{x}}.∥ bold_v ( bold_x ) - bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ≤ italic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT ( bold_x ) ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_v ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∀ bold_x ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT . (2.10)
Proof.

Since 𝐬𝐯0superscriptsubscript𝐬𝐯0\mathbf{s}_{\mathbf{v}}^{0}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interpolates 𝐯𝐯\mathbf{v}bold_v component-wise using the same kernel K𝐾Kitalic_K and interpolation points {𝐱i}i=1msuperscriptsubscriptsubscript𝐱𝑖𝑖1𝑚\left\{\mathbf{x}_{i}\right\}_{i=1}^{m}{ bold_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, applying Theorem 2.2 yields

𝐯(𝐱)𝐬𝐯0(𝐱)𝐌2=𝐋𝖳(𝐯(𝐱)𝐬𝐯0(𝐱))22superscriptsubscriptnorm𝐯𝐱superscriptsubscript𝐬𝐯0𝐱𝐌2superscriptsubscriptnormsuperscript𝐋𝖳𝐯𝐱superscriptsubscript𝐬𝐯0𝐱22\displaystyle\left\|\mathbf{v}(\mathbf{x})-\mathbf{s}_{\mathbf{v}}^{0}(\mathbf% {x})\right\|_{\mathbf{M}}^{2}=\left\|\mathbf{L}^{\mathsf{T}}(\mathbf{v}(% \mathbf{x})-\mathbf{s}_{\mathbf{v}}^{0}(\mathbf{x}))\right\|_{2}^{2}∥ bold_v ( bold_x ) - bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∥ bold_L start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_v ( bold_x ) - bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT 𝐋22𝐯(𝐱)𝐬𝐯0(𝐱)22=𝐋22i=1ny|vi(𝐱)svi0(𝐱)|2absentsuperscriptsubscriptnorm𝐋22superscriptsubscriptnorm𝐯𝐱superscriptsubscript𝐬𝐯0𝐱22superscriptsubscriptnorm𝐋22superscriptsubscript𝑖1subscript𝑛𝑦superscriptsubscript𝑣𝑖𝐱superscriptsubscript𝑠subscript𝑣𝑖0𝐱2\displaystyle\leq\left\|\mathbf{L}\right\|_{2}^{2}\left\|\mathbf{v}(\mathbf{x}% )-\mathbf{s}_{\mathbf{v}}^{0}(\mathbf{x})\right\|_{2}^{2}=\left\|\mathbf{L}% \right\|_{2}^{2}\sum_{i=1}^{n_{y}}|v_{i}(\mathbf{x})-s_{v_{i}}^{0}(\mathbf{x})% |^{2}≤ ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ bold_v ( bold_x ) - bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT | italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_x ) - italic_s start_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( bold_x ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
𝐋22i=1nyPK,𝐗(𝐱)2viK2=PK,𝐗(𝐱)2𝐋22𝐯Kp2.absentsuperscriptsubscriptnorm𝐋22superscriptsubscript𝑖1subscript𝑛𝑦subscript𝑃𝐾𝐗superscript𝐱2superscriptsubscriptnormsubscript𝑣𝑖subscript𝐾2subscript𝑃𝐾𝐗superscript𝐱2superscriptsubscriptnorm𝐋22superscriptsubscriptnorm𝐯superscriptsubscript𝐾𝑝2\displaystyle\leq\left\|\mathbf{L}\right\|_{2}^{2}\sum_{i=1}^{n_{y}}P_{K,% \mathbf{X}}(\mathbf{x})^{2}\left\|v_{i}\right\|_{{\cal H}_{K}}^{2}=P_{K,% \mathbf{X}}(\mathbf{x})^{2}\left\|\mathbf{L}\right\|_{2}^{2}\left\|\mathbf{v}% \right\|_{{\cal H}_{K}^{p}}^{2}.≤ ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT ( bold_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_P start_POSTSUBSCRIPT italic_K , bold_X end_POSTSUBSCRIPT ( bold_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ bold_v ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

In Section 4, we use Corollary 2.1 to develop a strategy for constructing reduced-order models (ROMs) from data; Corollary 2.2 is used in Section 5 to derive a posteriori error estimates for these ROMs.

2.3 Kernel selection

Since a positive-definite kernel K𝐾Kitalic_K uniquely defines the RKHS Ksubscript𝐾{\cal H}_{K}caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT, the choice of kernel determines what form an interpolant can take as well as the approximation power of the optimal interpolant. We argue for the use of different types of kernels depending on how much information is available about the function 𝐯:nxny\mathbf{v}:{}^{n_{x}}\to{}^{n_{y}}bold_v : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT being interpolated.

2.3.1 Unknown structure: radial basis function kernels

If the structure of 𝐯𝐯\mathbf{v}bold_v is unknown, one effective choice is to generate the kernel using a radial basis function (RBF). These general-purpose kernels have the form

K(𝐱,𝐱)=ψ(ϵ𝐱𝐱2),𝐾𝐱superscript𝐱𝜓italic-ϵsubscriptnorm𝐱superscript𝐱2\displaystyle K(\mathbf{x},\mathbf{x}^{\prime})=\psi(\epsilon\left\|\mathbf{x}% -\mathbf{x}^{\prime}\right\|_{2}),italic_K ( bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_ψ ( italic_ϵ ∥ bold_x - bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , (2.11a)
where ψ:0\psi:{}_{\geq 0}\to\realitalic_ψ : start_FLOATSUBSCRIPT ≥ 0 end_FLOATSUBSCRIPT → and ϵ>0italic-ϵ0\epsilon>0italic_ϵ > 0. Hence, RBF kernel interpolants are given by
𝐬𝐯γ(𝐱)=𝛀𝖳𝝍ϵ(𝐱),𝝍ϵ(𝐱)=[ψ(ϵ𝐱1𝐱2)ψ(ϵ𝐱m𝐱2)].m\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})={\boldsymbol{\Omega}% }^{\mathsf{T}}{\boldsymbol{\psi}}_{\!\epsilon}(\mathbf{x}),\qquad{\boldsymbol{% \psi}}_{\!\epsilon}(\mathbf{x})=\begin{bmatrix}\psi(\epsilon\left\|\mathbf{x}_% {1}-\mathbf{x}\right\|_{2})\\ \vdots\\ \psi(\epsilon\left\|\mathbf{x}_{m}-\mathbf{x}\right\|_{2})\end{bmatrix}\in{}^{% m}.bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( bold_x ) , bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( bold_x ) = [ start_ARG start_ROW start_CELL italic_ψ ( italic_ϵ ∥ bold_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - bold_x ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_ψ ( italic_ϵ ∥ bold_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT - bold_x ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT . (2.11b)

The so-called shape parameter ϵitalic-ϵ\epsilonitalic_ϵ is a hyperparameter that should be tuned to achieve optimal performance. Table 1 provides examples of commonly used RBF generator functions ψ𝜓\psiitalic_ψ. Note that the cost of evaluating an RBF kernel interpolant is 𝒪(m(nx+ny))𝒪𝑚subscript𝑛𝑥subscript𝑛𝑦\mathcal{O}(m(n_{x}+n_{y}))caligraphic_O ( italic_m ( italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ) ). A thorough discussion of the use of RBFs in kernel interpolation can be found in, e.g., [64].

Name ψ(x)𝜓𝑥\psi(x)italic_ψ ( italic_x )
Gaussian exp(x2)superscript𝑥2\exp(-x^{2})roman_exp ( - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )
Basic Matérn exp(x)𝑥\exp(-x)roman_exp ( - italic_x )
Inverse Quadratic (1+x2)1superscript1superscript𝑥21(1+x^{2})^{-1}( 1 + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
Inverse Multiquadric (1+x2)1/2superscript1superscript𝑥212(1+x^{2})^{-1/2}( 1 + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT
Thin Plate Spline x2log(x)superscript𝑥2𝑥x^{2}\log(x)italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_log ( italic_x )
Table 1: Examples of common RBF kernel-generating functions.

2.3.2 Known structure: feature map kernels

If the structure of 𝐯𝐯\mathbf{v}bold_v is known, kernels induced by feature maps can often be used to endow the interpolant with matching structure, which can result in more accurate and interpretable approximations than when using general-purpose kernels. A feature map kernel can be written as

K(𝐱,𝐱)=ϕ(𝐱)𝖳𝐆ϕ(𝐱),𝐾𝐱superscript𝐱bold-italic-ϕsuperscript𝐱𝖳𝐆bold-italic-ϕsuperscript𝐱\displaystyle K(\mathbf{x},\mathbf{x}^{\prime})={\boldsymbol{\phi}}(\mathbf{x}% )^{\mathsf{T}}\mathbf{G}{\boldsymbol{\phi}}(\mathbf{x}^{\prime}),italic_K ( bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = bold_italic_ϕ ( bold_x ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , (2.12a)
where ϕ:nxnϕ{\boldsymbol{\phi}}:{}^{n_{x}}\to{}^{n_{\phi}}bold_italic_ϕ : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is called the feature map and 𝐆nϕ×nϕ\mathbf{G}\in{}^{n_{\phi}\times n_{\phi}}bold_G ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is a symmetric positive definite weighting matrix. It can be easily verified that feature map kernels are positive definite kernels (see, e.g., [49]). A feature map kernel results in a kernel interpolant of the form
𝐬𝐯γ(𝐱)superscriptsubscript𝐬𝐯𝛾𝐱\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) =𝛀𝖳K(𝐗,𝐱)=𝛀𝖳ϕ(𝐗)𝖳𝐆ϕ(𝐱)=𝛀𝖳ϕ(𝐗)𝖳𝐆𝐂ϕ(𝐱)=𝐂ϕ(𝐱),absentsuperscript𝛀𝖳𝐾𝐗𝐱superscript𝛀𝖳bold-italic-ϕsuperscript𝐗𝖳𝐆bold-italic-ϕ𝐱subscriptsuperscript𝛀𝖳bold-italic-ϕsuperscript𝐗𝖳𝐆𝐂bold-italic-ϕ𝐱𝐂bold-italic-ϕ𝐱\displaystyle={\boldsymbol{\Omega}}^{\mathsf{T}}K(\mathbf{X},\mathbf{x})={% \boldsymbol{\Omega}}^{\mathsf{T}}{\boldsymbol{\phi}}(\mathbf{X})^{\mathsf{T}}% \mathbf{G}{\boldsymbol{\phi}}(\mathbf{x})=\underbrace{{\boldsymbol{\Omega}}^{% \mathsf{T}}{\boldsymbol{\phi}}(\mathbf{X})^{\mathsf{T}}\mathbf{G}}_{\mathbf{C}% }{\boldsymbol{\phi}}(\mathbf{x})=\mathbf{C}{\boldsymbol{\phi}}(\mathbf{x}),= bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) = bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ϕ ( bold_X ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( bold_x ) = under⏟ start_ARG bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ϕ ( bold_X ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G end_ARG start_POSTSUBSCRIPT bold_C end_POSTSUBSCRIPT bold_italic_ϕ ( bold_x ) = bold_C bold_italic_ϕ ( bold_x ) , (2.12b)

where ϕ(𝐗)[ϕ(𝐱1)ϕ(𝐱m)]nϕ×m{\boldsymbol{\phi}}(\mathbf{X})\coloneqq[~{}{\boldsymbol{\phi}}(\mathbf{x}_{1}% )~{}~{}\cdots~{}~{}{\boldsymbol{\phi}}(\mathbf{x}_{m})~{}]\in{}^{n_{\phi}% \times m}bold_italic_ϕ ( bold_X ) ≔ [ bold_italic_ϕ ( bold_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⋯ bold_italic_ϕ ( bold_x start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT × italic_m end_FLOATSUPERSCRIPT. Importantly, the matrix 𝐂ny×nϕ\mathbf{C}\in{}^{n_{y}\times n_{\phi}}bold_C ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT can be computed once and reused repeatedly for online kernel evaluations. After constructing 𝐂𝐂\mathbf{C}bold_C, the cost of evaluating a feature map kernel interpolant is therefore 𝒪(nϕny)𝒪subscript𝑛italic-ϕsubscript𝑛𝑦\mathcal{O}(n_{\phi}n_{y})caligraphic_O ( italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ), plus the expense of evaluating ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ once.

The advantage of feature map kernels is that one can imbue 𝐬𝐯γsuperscriptsubscript𝐬𝐯𝛾\mathbf{s}_{\mathbf{v}}^{\gamma}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT with specific structure by designing the feature map ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ accordingly. For example, if

ϕ(𝐱)=[𝐱𝐱𝐱],nx+nx2\displaystyle{\boldsymbol{\phi}}(\mathbf{x})=\begin{bmatrix}\mathbf{x}\\ \mathbf{x}\otimes\mathbf{x}\end{bmatrix}\in{}^{n_{x}+n_{x}^{2}},bold_italic_ϕ ( bold_x ) = [ start_ARG start_ROW start_CELL bold_x end_CELL end_ROW start_ROW start_CELL bold_x ⊗ bold_x end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT , (2.13)

where tensor-product\otimes denotes the Kronecker product [59], then the associated kernel interpolant can be written as

𝐬𝐯γ(𝐱)=𝐂1𝐱+𝐂2[𝐱𝐱],𝐂=[𝐂1𝐂2].ny×(nx+nx2)\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})=\mathbf{C}_{1}% \mathbf{x}+\mathbf{C}_{2}[\mathbf{x}\otimes\mathbf{x}],\qquad\mathbf{C}=[~{}% \mathbf{C}_{1}~{}~{}\mathbf{C}_{2}~{}]\in{}^{n_{y}\times(n_{x}+n_{x}^{2})}.bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = bold_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT bold_x + bold_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ bold_x ⊗ bold_x ] , bold_C = [ bold_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT bold_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × ( italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_FLOATSUPERSCRIPT . (2.14)

Therefore, if it is known that 𝐯𝐯\mathbf{v}bold_v has linear-quadratic structure, then using a kernel induced by the feature map eq. 2.13 results in a kernel interpolant that has the same linear-quadratic structure.

2.3.3 Hybrid approach

For the purposes of model reduction, it is critical to keep the cost of evaluating the kernel interpolant low. The cost of evaluating an RBF kernel interpolant eq. 2.11b scales with the number of training samples m𝑚mitalic_m; by contrast, the cost of evaluating a feature map kernel interpolant eq. 2.12b is independent of m𝑚mitalic_m, but depends on the feature dimension nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT. If a feature map that fully specifies the desired structure requires a large nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT, one alternative is to define a new kernel that sums a less aggressive feature map kernel with an RBF kernel:

K(𝐱,𝐱)=cϕϕ(𝐱)𝖳𝐆ϕ(𝐱)+cψψ(ϵ𝐱𝐱2),𝐾𝐱superscript𝐱subscript𝑐italic-ϕbold-italic-ϕsuperscript𝐱𝖳𝐆bold-italic-ϕsuperscript𝐱subscript𝑐𝜓𝜓italic-ϵsubscriptnorm𝐱superscript𝐱2\displaystyle K(\mathbf{x},\mathbf{x}^{\prime})=c_{\phi}{\boldsymbol{\phi}}(% \mathbf{x})^{\mathsf{T}}\mathbf{G}{\boldsymbol{\phi}}(\mathbf{x}^{\prime})+c_{% \psi}\psi(\epsilon\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}),italic_K ( bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT bold_italic_ϕ ( bold_x ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT italic_ψ ( italic_ϵ ∥ bold_x - bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , (2.15a)
where cϕ,cψ>0c_{\phi},c_{\psi}\in{}_{>0}italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT ∈ start_FLOATSUBSCRIPT > 0 end_FLOATSUBSCRIPT are positive weighting coefficients and ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ is chosen to keep nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT from being too large. The resulting kernel interpolant then has the form
𝐬𝐯γ(𝐱)superscriptsubscript𝐬𝐯𝛾𝐱\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) =𝛀𝖳K(𝐗,𝐱)=𝛀𝖳(cϕϕ(𝐗)𝖳𝐆ϕ(𝐱)+cψ𝝍ϵ(𝐱))=𝐂ϕ(𝐱)+cψ𝛀𝖳𝝍ϵ(𝐱),absentsuperscript𝛀𝖳𝐾𝐗𝐱superscript𝛀𝖳subscript𝑐italic-ϕbold-italic-ϕsuperscript𝐗𝖳𝐆bold-italic-ϕ𝐱subscript𝑐𝜓subscript𝝍italic-ϵ𝐱𝐂bold-italic-ϕ𝐱subscript𝑐𝜓superscript𝛀𝖳subscript𝝍italic-ϵ𝐱\displaystyle={\boldsymbol{\Omega}}^{\mathsf{T}}K(\mathbf{X},\mathbf{x})={% \boldsymbol{\Omega}}^{\mathsf{T}}\big{(}c_{\phi}{\boldsymbol{\phi}}(\mathbf{X}% )^{\mathsf{T}}\mathbf{G}{\boldsymbol{\phi}}(\mathbf{x})+c_{\psi}{\boldsymbol{% \psi}}_{\!\epsilon}(\mathbf{x})\big{)}=\mathbf{C}{\boldsymbol{\phi}}(\mathbf{x% })+c_{\psi}{\boldsymbol{\Omega}}^{\mathsf{T}}{\boldsymbol{\psi}}_{\!\epsilon}(% \mathbf{x}),= bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( bold_X , bold_x ) = bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT bold_italic_ϕ ( bold_X ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( bold_x ) + italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( bold_x ) ) = bold_C bold_italic_ϕ ( bold_x ) + italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( bold_x ) , (2.15b)

where 𝐂=cϕ𝛀𝖳ϕ(𝐗)𝖳𝐆𝐂subscript𝑐italic-ϕsuperscript𝛀𝖳bold-italic-ϕsuperscript𝐗𝖳𝐆\mathbf{C}=c_{\phi}{\boldsymbol{\Omega}}^{\mathsf{T}}{\boldsymbol{\phi}}(% \mathbf{X})^{\mathsf{T}}\mathbf{G}bold_C = italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ϕ ( bold_X ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G now incorporates the weighting coefficient cϕsubscript𝑐italic-ϕc_{\phi}italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT. The idea is to use the feature map to incorporate dominant structure while relying on the RBF to approximate additional, potentially expensive terms. Note that this framework also applies to scenarios where the structure of 𝐯𝐯\mathbf{v}bold_v is only partially known.

As an example, consider the case where 𝐯𝐯\mathbf{v}bold_v is a quartic polynomial, i.e.,

𝐯(𝐱)=𝐀1𝐱+𝐀2[𝐱𝐱]+𝐀3[𝐱𝐱𝐱]+𝐀4[𝐱𝐱𝐱𝐱],𝐯𝐱subscript𝐀1𝐱subscript𝐀2delimited-[]tensor-product𝐱𝐱subscript𝐀3delimited-[]tensor-product𝐱𝐱𝐱subscript𝐀4delimited-[]tensor-product𝐱𝐱𝐱𝐱\displaystyle\mathbf{v}(\mathbf{x})=\mathbf{A}_{1}\mathbf{x}+\mathbf{A}_{2}[% \mathbf{x}\otimes\mathbf{x}]+\mathbf{A}_{3}[\mathbf{x}\otimes\mathbf{x}\otimes% \mathbf{x}]+\mathbf{A}_{4}[\mathbf{x}\otimes\mathbf{x}\otimes\mathbf{x}\otimes% \mathbf{x}],bold_v ( bold_x ) = bold_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT bold_x + bold_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ bold_x ⊗ bold_x ] + bold_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ bold_x ⊗ bold_x ⊗ bold_x ] + bold_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ bold_x ⊗ bold_x ⊗ bold_x ⊗ bold_x ] , (2.16)

where 𝐀1nx×nx\mathbf{A}_{1}\in{}^{n_{x}\times n_{x}}bold_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, 𝐀2nx×nx2\mathbf{A}_{2}\in{}^{n_{x}\times n_{x}^{2}}bold_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT, 𝐀3nx×nx3\mathbf{A}_{3}\in{}^{n_{x}\times n_{x}^{3}}bold_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT, and 𝐀4nx×nx4\mathbf{A}_{4}\in{}^{n_{x}\times n_{x}^{4}}bold_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. One option is to fully capture the structure using a quartic feature map,

ϕ(𝐱)=[𝐱𝐱𝐱𝐱𝐱𝐱𝐱𝐱𝐱𝐱].nx+nx2+nx3+nx4\displaystyle{\boldsymbol{\phi}}(\mathbf{x})=\begin{bmatrix}\mathbf{x}\\ \mathbf{x}\otimes\mathbf{x}\\ \mathbf{x}\otimes\mathbf{x}\otimes\mathbf{x}\\ \mathbf{x}\otimes\mathbf{x}\otimes\mathbf{x}\otimes\mathbf{x}\end{bmatrix}\in{% }^{n_{x}+n_{x}^{2}+n_{x}^{3}+n_{x}^{4}}.bold_italic_ϕ ( bold_x ) = [ start_ARG start_ROW start_CELL bold_x end_CELL end_ROW start_ROW start_CELL bold_x ⊗ bold_x end_CELL end_ROW start_ROW start_CELL bold_x ⊗ bold_x ⊗ bold_x end_CELL end_ROW start_ROW start_CELL bold_x ⊗ bold_x ⊗ bold_x ⊗ bold_x end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT . (2.17)

However, evaluating the associated kernel interpolant costs 𝒪(nx4ny)𝒪superscriptsubscript𝑛𝑥4subscript𝑛𝑦\mathcal{O}(n_{x}^{4}n_{y})caligraphic_O ( italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ) operations, which is quite large for moderate nxsubscript𝑛𝑥n_{x}italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT. Using the linear-quadratic feature map eq. 2.13 decreases nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT from nx4superscriptsubscript𝑛𝑥4n_{x}^{4}italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT to nx2superscriptsubscript𝑛𝑥2n_{x}^{2}italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and supplementing with an RBF kernel results in a kernel interpolant of the form

𝐬𝐯γ(𝐱)=𝐂1𝐱+𝐂2[𝐱𝐱]+cψ𝛀𝖳𝝍ϵ(𝐱).superscriptsubscript𝐬𝐯𝛾𝐱subscript𝐂1𝐱subscript𝐂2delimited-[]tensor-product𝐱𝐱subscript𝑐𝜓superscript𝛀𝖳subscript𝝍italic-ϵ𝐱\displaystyle\mathbf{s}_{\mathbf{v}}^{\gamma}(\mathbf{x})=\mathbf{C}_{1}% \mathbf{x}+\mathbf{C}_{2}[\mathbf{x}\otimes\mathbf{x}]+c_{\psi}{\boldsymbol{% \Omega}}^{\mathsf{T}}{\boldsymbol{\psi}}_{\!\epsilon}(\mathbf{x}).bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ( bold_x ) = bold_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT bold_x + bold_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ bold_x ⊗ bold_x ] + italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( bold_x ) . (2.18)

This interpolant does not fully represent the quartic structure of eq. 2.16, but it can be evaluated with only 𝒪((nx2+m)ny)𝒪superscriptsubscript𝑛𝑥2𝑚subscript𝑛𝑦\mathcal{O}((n_{x}^{2}+m)n_{y})caligraphic_O ( ( italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_m ) italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ) operations. In this case, the RBF term acts as a type of closure term for structure that is not accounted for by the feature map.

Remark 2.1 (Input normalization).

In some cases, in particular when using high-order polynomial feature maps, the kernel matrix K(𝐗,𝐗)𝐾𝐗𝐗K(\mathbf{X},\mathbf{X})italic_K ( bold_X , bold_X ) used for determining 𝛀𝛀{\boldsymbol{\Omega}}bold_Ω may be poorly conditioned. Increasing the regularization constant γ𝛾\gammaitalic_γ can improve the conditioning of the system eq. 2.9b, but this can also degrade the accuracy of the resulting kernel interpolant. Applying a normalization to the inputs can help remedy the situation: for any injective 𝛎:nxnx{\boldsymbol{\nu}}:{}^{n_{x}}\to{}^{n_{x}}bold_italic_ν : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, if K𝐾Kitalic_K is positive definite, then the function K𝛎:×nxnxK_{\boldsymbol{\nu}}:{}^{n_{x}}\times{}^{n_{x}}\to\realitalic_K start_POSTSUBSCRIPT bold_italic_ν end_POSTSUBSCRIPT : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT × start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → defined by

K𝝂(𝐱,𝐱)=K(𝝂(𝐱),𝝂(𝐱))subscript𝐾𝝂𝐱superscript𝐱𝐾𝝂𝐱𝝂superscript𝐱\displaystyle K_{\boldsymbol{\nu}}(\mathbf{x},\mathbf{x}^{\prime})=K({% \boldsymbol{\nu}}(\mathbf{x}),{\boldsymbol{\nu}}(\mathbf{x}^{\prime}))italic_K start_POSTSUBSCRIPT bold_italic_ν end_POSTSUBSCRIPT ( bold_x , bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_K ( bold_italic_ν ( bold_x ) , bold_italic_ν ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) (2.19)

is also a positive-definite kernel function [49], and choosing 𝛎𝛎{\boldsymbol{\nu}}bold_italic_ν judiciously can improve the conditioning of K𝛎(𝐗,𝐗)subscript𝐾𝛎𝐗𝐗K_{\boldsymbol{\nu}}(\mathbf{X},\mathbf{X})italic_K start_POSTSUBSCRIPT bold_italic_ν end_POSTSUBSCRIPT ( bold_X , bold_X ) compared to K(𝐗,𝐗)𝐾𝐗𝐗K(\mathbf{X},\mathbf{X})italic_K ( bold_X , bold_X ). A common choice is 𝛎(𝐱)=𝚺1(𝐱𝐱¯)𝛎𝐱superscript𝚺1𝐱¯𝐱{\boldsymbol{\nu}}(\mathbf{x})={\boldsymbol{\Sigma}}^{-1}(\mathbf{x}-\bar{% \mathbf{x}})bold_italic_ν ( bold_x ) = bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( bold_x - over¯ start_ARG bold_x end_ARG ), where 𝚺=diag(𝛔)nx×nx{\boldsymbol{\Sigma}}=\operatorname{diag}({\boldsymbol{\sigma}})\in{}^{n_{x}% \times n_{x}}bold_Σ = roman_diag ( bold_italic_σ ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐱¯nx\bar{\mathbf{x}}\in{}^{n_{x}}over¯ start_ARG bold_x end_ARG ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT with components

σi=maxj(𝐗ij)minj(𝐗ij),x¯i=minj(𝐗ij),i=1,,d,formulae-sequencesubscript𝜎𝑖subscript𝑗subscript𝐗𝑖𝑗subscript𝑗subscript𝐗𝑖𝑗formulae-sequencesubscript¯𝑥𝑖subscript𝑗subscript𝐗𝑖𝑗𝑖1𝑑\displaystyle\sigma_{i}=\max_{j}(\mathbf{X}_{ij})-\min_{j}(\mathbf{X}_{ij}),% \qquad\bar{x}_{i}=\min_{j}(\mathbf{X}_{ij}),\qquad i=1,\dots,d,italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_max start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( bold_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) - roman_min start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( bold_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) , over¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_min start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( bold_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) , italic_i = 1 , … , italic_d , (2.20)

which maps the entries of each row of inputs to the interval [0,1]01[0,1][ 0 , 1 ]. In this case, an effective choice for the weighting matrix 𝐆𝐆\mathbf{G}bold_G in feature map kernels is 𝐆=(1/nϕ)𝐈𝐆1subscript𝑛italic-ϕ𝐈\mathbf{G}=(1/n_{\phi})\mathbf{I}bold_G = ( 1 / italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ) bold_I, where nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT is the feature map dimension.

3 Intrusive projection-based model reduction

We now return to the model reduction setting and give a brief overview of intrusive projection-based ROMs, which inherit certain structure from the systems they emulate. Section 4 presents a non-intrusive alternative to intrusive model reduction for which kernel interpolation is the key ingredient and which can be designed to mimic the structure inheritance enjoyed by projection-based ROMs.

3.1 Generic projection-based reduced-order models

We consider high-dimensional systems of ordinary differential equations (ODEs) of the form

ddt𝐪(t)=𝐟(𝐪(t)),𝐪(0)=𝐪0(𝝁),formulae-sequencedd𝑡𝐪𝑡𝐟𝐪𝑡𝐪0subscript𝐪0𝝁\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{f}(\mathbf{q}% (t)),\qquad\mathbf{q}(0)=\mathbf{q}_{0}({\boldsymbol{\mu}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_f ( bold_q ( italic_t ) ) , bold_q ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (3.1)

where 𝐪:[0,T]nq\mathbf{q}:[0,T]\to{}^{n_{q}}bold_q : [ 0 , italic_T ] → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is the state, 𝐟:nqnq\mathbf{f}:{}^{n_{q}}\to{}^{n_{q}}bold_f : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT governs the state evolution, 𝐪0(𝝁)nq\mathbf{q}_{0}({\boldsymbol{\mu}})\in{}^{n_{q}}bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is the initial condition parameterized by 𝝁𝒟nμ{\boldsymbol{\mu}}\in{\cal D}\subset{}^{n_{\mu}}bold_italic_μ ∈ caligraphic_D ⊂ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, and T>0𝑇0T>0italic_T > 0 is the final desired simulation time. Models of this form often arise from semi-discretizations of time-dependent partial differential equations (PDEs), in which case the large state dimension nqsubscript𝑛𝑞n_{q}italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT corresponds to the fidelity of the underlying mesh. We call eq. 3.1 the full-order model (FOM).

A ROM for eq. 3.1 is a low-dimensional system of ODEs whose solution can be used to approximate the FOM state 𝐪(t)𝐪𝑡\mathbf{q}(t)bold_q ( italic_t ). To that end, we consider a low-dimensional state approximation,

𝐪(t)𝐠(𝐪~(t)),𝐪𝑡𝐠~𝐪𝑡\displaystyle\mathbf{q}(t)\approx\mathbf{g}(\tilde{\mathbf{q}}(t)),bold_q ( italic_t ) ≈ bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) , (3.2)

where 𝐠:rnq\mathbf{g}:{}^{r}\to{}^{n_{q}}bold_g : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐪~:[0,T]r\tilde{\mathbf{q}}:[0,T]\to{}^{r}over~ start_ARG bold_q end_ARG : [ 0 , italic_T ] → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT is the reduced-order state, with rnqmuch-less-than𝑟subscript𝑛𝑞r\ll n_{q}italic_r ≪ italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT. The function 𝐠𝐠\mathbf{g}bold_g represents a decompression operation, mapping from reduced coordinates to the original high-dimensional space. We assume the existence of a corresponding compression map 𝐡:nqr\mathbf{h}:{}^{n_{q}}\to{}^{r}bold_h : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT, mapping high-dimensional states to reduced coordinates, such that 𝐡𝐠𝐡𝐠\mathbf{h}\circ\mathbf{g}bold_h ∘ bold_g is the identity. Importantly, (𝐠𝐡)2=𝐠(𝐡𝐠)𝐡=𝐠𝐡superscript𝐠𝐡2𝐠𝐡𝐠𝐡𝐠𝐡(\mathbf{g}\circ\mathbf{h})^{2}=\mathbf{g}\circ(\mathbf{h}\circ\mathbf{g})% \circ\mathbf{h}=\mathbf{g}\circ\mathbf{h}( bold_g ∘ bold_h ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = bold_g ∘ ( bold_h ∘ bold_g ) ∘ bold_h = bold_g ∘ bold_h, i.e., 𝐠𝐡𝐠𝐡\mathbf{g}\circ\mathbf{h}bold_g ∘ bold_h is a projection. The evolution for the reduced state 𝐪~(t)~𝐪𝑡\tilde{\mathbf{q}}(t)over~ start_ARG bold_q end_ARG ( italic_t ) is then given by

ddt𝐪~(t)=ddt𝐡(𝐠(𝐪~(t)))=𝐡(𝐠(𝐪~(t)))ddt𝐠(𝐪~(t))𝐡(𝐠(𝐪~(t)))𝐟(𝐠(𝐪~(t))),dd𝑡~𝐪𝑡dd𝑡𝐡𝐠~𝐪𝑡superscript𝐡𝐠~𝐪𝑡dd𝑡𝐠~𝐪𝑡superscript𝐡𝐠~𝐪𝑡𝐟𝐠~𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\frac{\textrm% {d}}{\textrm{d}t}\mathbf{h}(\mathbf{g}(\tilde{\mathbf{q}}(t)))=\mathbf{h}^{% \prime}(\mathbf{g}(\tilde{\mathbf{q}}(t)))\frac{\textrm{d}}{\textrm{d}t}% \mathbf{g}(\tilde{\mathbf{q}}(t))\approx\mathbf{h}^{\prime}(\mathbf{g}(\tilde{% \mathbf{q}}(t)))\mathbf{f}(\mathbf{g}(\tilde{\mathbf{q}}(t))),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_h ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) = bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ≈ bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) bold_f ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) , (3.3)

in which 𝐡:nqnq×nq\mathbf{h}^{\prime}:{}^{n_{q}}\to{}^{n_{q}\times n_{q}}bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is the Jacobian of 𝐡𝐡\mathbf{h}bold_h and where the final step comes from inserting the approximation eq. 3.2 into the FOM eq. 3.1. The resulting system

ddt𝐪~(t)=𝐡(𝐠(𝐪~(t)))𝐟(𝐠(𝐪~(t))),𝐪~(0)=𝐡(𝐪0(𝝁))formulae-sequencedd𝑡~𝐪𝑡superscript𝐡𝐠~𝐪𝑡𝐟𝐠~𝐪𝑡~𝐪0𝐡subscript𝐪0𝝁\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\mathbf{h}^{% \prime}(\mathbf{g}(\tilde{\mathbf{q}}(t)))\mathbf{f}(\mathbf{g}(\tilde{\mathbf% {q}}(t))),\qquad\tilde{\mathbf{q}}(0)=\mathbf{h}(\mathbf{q}_{0}({\boldsymbol{% \mu}}))divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) bold_f ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) , over~ start_ARG bold_q end_ARG ( 0 ) = bold_h ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) ) (3.4)

is the projection-based ROM for eq. 3.1 corresponding to 𝐠𝐠\mathbf{g}bold_g and 𝐡𝐡\mathbf{h}bold_h.

As written, eq. 3.4 is not highly practical because it involves mapping up to the high-dimensional state space, performing computations in that space, then compressing the results. However, for many common choices of 𝐟𝐟\mathbf{f}bold_f, 𝐠𝐠\mathbf{g}bold_g, and 𝐡𝐡\mathbf{h}bold_h, eq. 3.4 simplifies in such a way that all computations can be performed in the reduced space, as we will demonstrate shortly.

3.2 Linear and quadratic dimension reduction

Classical model reduction methods typically define 𝐠𝐠\mathbf{g}bold_g and 𝐡𝐡\mathbf{h}bold_h as affine functions. In this work, we consider a slightly generalized approximation introduced in [26] and leveraged in [4, 18, 19, 54]: let

𝐠(𝐪~)=𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~],𝐠~𝐪¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle\mathbf{g}(\tilde{\mathbf{q}})=\bar{\mathbf{q}}+\mathbf{V}\tilde{% \mathbf{q}}+\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}],bold_g ( over~ start_ARG bold_q end_ARG ) = over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] , (3.5)

where 𝐪¯nq\bar{\mathbf{q}}\in{}^{n_{q}}over¯ start_ARG bold_q end_ARG ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT is a fixed reference vector, 𝐕nq×r\mathbf{V}\in{}^{n_{q}\times r}bold_V ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_r end_FLOATSUPERSCRIPT has orthonormal columns, and 𝐖nq×r2\mathbf{W}\in{}^{n_{q}\times r^{2}}bold_W ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT satisfies 𝐕𝖳𝐖=𝟎superscript𝐕𝖳𝐖0\mathbf{V}^{\mathsf{T}}\mathbf{W}=\bf 0bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_W = bold_0. This approximation defines an r𝑟ritalic_r-dimensional quadratic manifold embedded in nqsubscript𝑛𝑞{}^{n_{q}}start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. An appropriate compression map corresponding to eq. 3.5 is given by

𝐡(𝐪)𝐡𝐪\displaystyle\mathbf{h}(\mathbf{q})bold_h ( bold_q ) =𝐕𝖳(𝐪𝐪¯),absentsuperscript𝐕𝖳𝐪¯𝐪\displaystyle=\mathbf{V}^{\mathsf{T}}(\mathbf{q}-\bar{\mathbf{q}}),= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q - over¯ start_ARG bold_q end_ARG ) , (3.6)

which has Jacobian 𝐡(𝐪)=𝐕𝖳superscript𝐡𝐪superscript𝐕𝖳\mathbf{h}^{\prime}(\mathbf{q})=\mathbf{V}^{\mathsf{T}}bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_q ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT and satisfies

(𝐡𝐠)(𝐪~)=𝐕𝖳((𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~])𝐪¯)=𝐕𝖳𝐪¯+𝐪~𝐕𝖳𝐪¯=𝐪~,𝐡𝐠~𝐪absentsuperscript𝐕𝖳¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪¯𝐪superscript𝐕𝖳¯𝐪~𝐪superscript𝐕𝖳¯𝐪~𝐪\displaystyle\begin{aligned} (\mathbf{h}\circ\mathbf{g})(\tilde{\mathbf{q}})&=% \mathbf{V}^{\mathsf{T}}\big{(}(\bar{\mathbf{q}}+\mathbf{V}\tilde{\mathbf{q}}+% \mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}])-\bar{\mathbf{q}}\big{% )}=\mathbf{V}^{\mathsf{T}}\bar{\mathbf{q}}+\tilde{\mathbf{q}}-\mathbf{V}^{% \mathsf{T}}\bar{\mathbf{q}}=\tilde{\mathbf{q}},\end{aligned}start_ROW start_CELL ( bold_h ∘ bold_g ) ( over~ start_ARG bold_q end_ARG ) end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( ( over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) - over¯ start_ARG bold_q end_ARG ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT over¯ start_ARG bold_q end_ARG + over~ start_ARG bold_q end_ARG - bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT over¯ start_ARG bold_q end_ARG = over~ start_ARG bold_q end_ARG , end_CELL end_ROW (3.7)

since 𝐕𝖳𝐕superscript𝐕𝖳𝐕\mathbf{V}^{\mathsf{T}}\mathbf{V}bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V is the identity and 𝐕𝖳superscript𝐕𝖳\mathbf{V}^{\mathsf{T}}bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT annihilates 𝐖𝐖\mathbf{W}bold_W. With 𝐠𝐠\mathbf{g}bold_g and 𝐡𝐡\mathbf{h}bold_h thus defined, the ROM eq. 3.4 becomes

ddt𝐪~(t)=𝐟~(𝐪~(t))𝐕𝖳𝐟(𝐪¯+𝐕𝐪~(t)+𝐖[𝐪~(t)𝐪~(t)]),𝐪~(0)=𝐕𝖳(𝐪0(𝝁)𝐪¯),formulae-sequencedd𝑡~𝐪𝑡~𝐟~𝐪𝑡superscript𝐕𝖳𝐟¯𝐪𝐕~𝐪𝑡𝐖delimited-[]tensor-product~𝐪𝑡~𝐪𝑡~𝐪0superscript𝐕𝖳subscript𝐪0𝝁¯𝐪\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{f}}(\tilde{\mathbf{q}}(t))\coloneqq\mathbf{V}^{\mathsf{T}}\mathbf{f}% \big{(}\bar{\mathbf{q}}+\mathbf{V}\tilde{\mathbf{q}}(t)+\mathbf{W}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]\big{)},\qquad\tilde{\mathbf{q}}(0)% =\mathbf{V}^{\mathsf{T}}(\mathbf{q}_{0}({\boldsymbol{\mu}})-\bar{\mathbf{q}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_f end_ARG ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ≔ bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG ( italic_t ) + bold_W [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] ) , over~ start_ARG bold_q end_ARG ( 0 ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) - over¯ start_ARG bold_q end_ARG ) , (3.8)

a system of rnqmuch-less-than𝑟subscript𝑛𝑞r\ll n_{q}italic_r ≪ italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ODEs defined by the function 𝐟~:rr\tilde{\mathbf{f}}:{}^{r}\to{}^{r}over~ start_ARG bold_f end_ARG : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT.

The choices of 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG, 𝐕𝐕\mathbf{V}bold_V, and 𝐖𝐖\mathbf{W}bold_W dictate the quality of the approximation eq. 3.5 and of the resulting ROM eq. 3.8. To make an informed selection, we assume access to a limited set of training data: given a set of training parameters 𝝁1,,𝝁M𝒟subscript𝝁1subscript𝝁𝑀𝒟{\boldsymbol{\mu}}_{1},\ldots,{\boldsymbol{\mu}}_{M}\subset{\cal D}bold_italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , bold_italic_μ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ⊂ caligraphic_D and observation times t0,t1,,tntsubscript𝑡0subscript𝑡1subscript𝑡subscript𝑛𝑡t_{0},t_{1},\ldots,t_{n_{t}}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT, let

𝐪k()𝐪(tk;𝝁),nq=1,,M,k=0,1,,nt,\displaystyle\mathbf{q}_{k}^{(\ell)}\coloneqq\mathbf{q}(t_{k};{\boldsymbol{\mu% }}_{\ell})\in{}^{n_{q}},\qquad\begin{aligned} \ell&=1,\ldots,M,\\ k&=0,1,\ldots,n_{t},\end{aligned}bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ≔ bold_q ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; bold_italic_μ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT , start_ROW start_CELL roman_ℓ end_CELL start_CELL = 1 , … , italic_M , end_CELL end_ROW start_ROW start_CELL italic_k end_CELL start_CELL = 0 , 1 , … , italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , end_CELL end_ROW (3.9)

which are snapshots of the full-order state solution to the FOM eq. 3.1. The reference vector 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG is usually set to zero, the initial condition at a fixed training parameter value, or the average snapshot, i.e.,

𝐪¯=1Mnt=1Mk=0nt𝐪k().¯𝐪1𝑀subscript𝑛𝑡superscriptsubscript1𝑀superscriptsubscript𝑘0subscript𝑛𝑡superscriptsubscript𝐪𝑘\displaystyle\bar{\mathbf{q}}=\frac{1}{Mn_{t}}\sum_{\ell=1}^{M}\sum_{k=0}^{n_{% t}}\mathbf{q}_{k}^{(\ell)}.over¯ start_ARG bold_q end_ARG = divide start_ARG 1 end_ARG start_ARG italic_M italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT . (3.10)

The model reduction framework developed in Section 4 applies for any 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG, 𝐕𝐕\mathbf{V}bold_V and 𝐖𝐖\mathbf{W}bold_W such that 𝐕𝖳𝐕=𝐈superscript𝐕𝖳𝐕𝐈\mathbf{V}^{\mathsf{T}}\mathbf{V}=\mathbf{I}bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V = bold_I and 𝐕𝖳𝐖=𝟎superscript𝐕𝖳𝐖0\mathbf{V}^{\mathsf{T}}\mathbf{W}=\bf 0bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_W = bold_0, but we focus on two best-practice cases.

First, if 𝐖=𝟎𝐖0\mathbf{W}=\bf 0bold_W = bold_0, the manifold defined by 𝐠𝐠\mathbf{g}bold_g has no curvature and reduces to an affine subspace (or a linear subspace if 𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\bf 0over¯ start_ARG bold_q end_ARG = bold_0) of nqsubscript𝑛𝑞{}^{n_{q}}start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. In this case, we select 𝐕𝐕\mathbf{V}bold_V using proper orthogonal decomposition (POD) [9, 21, 56]. Define

𝐐[(𝐪0(1)𝐪¯)(𝐪nt(1)𝐪¯)(𝐪0(2)𝐪¯)(𝐪nt(M)𝐪¯)],nq×M(nt+1)\displaystyle\mathbf{Q}\coloneqq\begin{bmatrix}(\mathbf{q}_{0}^{(1)}-\bar{% \mathbf{q}})&\cdots&(\mathbf{q}_{n_{t}}^{(1)}-\bar{\mathbf{q}})&(\mathbf{q}_{0% }^{(2)}-\bar{\mathbf{q}})&\cdots&(\mathbf{q}_{n_{t}}^{(M)}-\bar{\mathbf{q}})% \end{bmatrix}\in{}^{n_{q}\times M(n_{t}+1)},bold_Q ≔ [ start_ARG start_ROW start_CELL ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT - over¯ start_ARG bold_q end_ARG ) end_CELL start_CELL ⋯ end_CELL start_CELL ( bold_q start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT - over¯ start_ARG bold_q end_ARG ) end_CELL start_CELL ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT - over¯ start_ARG bold_q end_ARG ) end_CELL start_CELL ⋯ end_CELL start_CELL ( bold_q start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_M ) end_POSTSUPERSCRIPT - over¯ start_ARG bold_q end_ARG ) end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) end_FLOATSUPERSCRIPT , (3.11)

the matrix of snapshots stacked column-wise and shifted by the reference snapshot. The rank-r𝑟ritalic_r POD basis matrix 𝐕𝐕\mathbf{V}bold_V is given by the first r𝑟ritalic_r left singular vectors of 𝐐𝐐\mathbf{Q}bold_Q. With this choice, 𝐠𝐡𝐠𝐡\mathbf{g}\circ\mathbf{h}bold_g ∘ bold_h is the optimal r𝑟ritalic_r-dimensional approximator for the (shifted) training snapshots in an L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT sense.

Second, to construct a nonzero 𝐖𝐖\mathbf{W}bold_W, we use the greedy-optimal quadratic manifold (QM) approach of [54]. This method iteratively selects the columns of 𝐕𝐕\mathbf{V}bold_V from the left singular vectors of 𝐐𝐐\mathbf{Q}bold_Q and solves a least-squares problem to determine 𝐖𝐖\mathbf{W}bold_W,

min𝐯i,𝐖(𝐈𝐕𝐕𝖳)𝐐𝐖[𝐕𝖳𝐐𝐕𝖳𝐐]F2+ρ𝐖F2,subscriptsubscript𝐯𝑖𝐖superscriptsubscriptnorm𝐈superscript𝐕𝐕𝖳𝐐𝐖delimited-[]direct-productsuperscript𝐕𝖳𝐐superscript𝐕𝖳𝐐𝐹2𝜌superscriptsubscriptnorm𝐖𝐹2\displaystyle\min_{\mathbf{v}_{i},\mathbf{W}}\;\left\|(\mathbf{I}-\mathbf{V}% \mathbf{V}^{\mathsf{T}})\mathbf{Q}-\mathbf{W}[\mathbf{V}^{\mathsf{T}}\mathbf{Q% }\odot\mathbf{V}^{\mathsf{T}}\mathbf{Q}]\right\|_{F}^{2}+\rho\left\|\mathbf{W}% \right\|_{F}^{2},roman_min start_POSTSUBSCRIPT bold_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , bold_W end_POSTSUBSCRIPT ∥ ( bold_I - bold_VV start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_Q - bold_W [ bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_Q ⊙ bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_Q ] ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ρ ∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (3.12)

where 𝐯isubscript𝐯𝑖\mathbf{v}_{i}bold_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the final column of 𝐕𝐕\mathbf{V}bold_V and all other columns are fixed from previous iterations. Here, direct-product\odot indicates the Khatri–Rao (column-wise Kronecker) product, and ρ0𝜌0\rho\geq 0italic_ρ ≥ 0 is a scalar regularization parameter. Traditional POD always sets 𝐯isubscript𝐯𝑖\mathbf{v}_{i}bold_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to the i𝑖iitalic_i-th left singular vector, but here each 𝐯isubscript𝐯𝑖\mathbf{v}_{i}bold_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT can be chosen from among any of the left singular vectors that have not yet been selected, which can lead to substantial accuracy gains.

Remark 3.1 (Kronecker redundancy).

The product 𝐪~𝐪~tensor-product~𝐪~𝐪\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG contains redundant terms, i.e., q~iq~jsubscript~𝑞𝑖subscript~𝑞𝑗\tilde{q}_{i}\tilde{q}_{j}over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT appears twice for each ij𝑖𝑗i\neq jitalic_i ≠ italic_j, which means two columns of 𝐖r×r2\mathbf{W}\in{}^{r\times r^{2}}bold_W ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT act on the same quadratic state interaction in the product 𝐖[𝐪~𝐪~]𝐖delimited-[]tensor-product~𝐪~𝐪\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]. As a consequence, the learning problem eq. 3.12 has infinitely many solutions. In practice, this issue is avoided by replacing tensor-product\otimes in eq. 3.5 with a compressed Kronecker product ~~tensor-product\tilde{\otimes}over~ start_ARG ⊗ end_ARG, defined by

𝐪~~𝐪~[q~12q~1q~2q~22q~r1q~rq~r2]𝖳,r(r+1)/2\displaystyle\tilde{\mathbf{q}}\,\tilde{\otimes}\,\tilde{\mathbf{q}}\coloneqq% \left[~{}\tilde{q}_{1}^{2}~{}~{}\tilde{q}_{1}\tilde{q}_{2}~{}~{}\tilde{q}_{2}^% {2}~{}~{}\dots~{}~{}\tilde{q}_{r-1}\tilde{q}_{r}~{}~{}\tilde{q}_{r}^{2}~{}% \right]^{\mathsf{T}}\in{}^{r(r+1)/2},over~ start_ARG bold_q end_ARG over~ start_ARG ⊗ end_ARG over~ start_ARG bold_q end_ARG ≔ [ over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT … over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_r - 1 end_POSTSUBSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT over~ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∈ start_FLOATSUPERSCRIPT italic_r ( italic_r + 1 ) / 2 end_FLOATSUPERSCRIPT , (3.13)

which leads to a matrix 𝐖~r×r(r+1)/2\tilde{\mathbf{W}}\in{}^{r\times r(r+1)/2}over~ start_ARG bold_W end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r ( italic_r + 1 ) / 2 end_FLOATSUPERSCRIPT such that 𝐖[𝐪~𝐪~]=𝐖~[𝐪~~𝐪~]𝐖delimited-[]tensor-product~𝐪~𝐪~𝐖delimited-[]~𝐪~tensor-product~𝐪\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]=\tilde{\mathbf{W}}[% \tilde{\mathbf{q}}\,\tilde{\otimes}\,\tilde{\mathbf{q}}]bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] = over~ start_ARG bold_W end_ARG [ over~ start_ARG bold_q end_ARG over~ start_ARG ⊗ end_ARG over~ start_ARG bold_q end_ARG ] for all 𝐪~r\tilde{\mathbf{q}}\in{}^{r}over~ start_ARG bold_q end_ARG ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT. Then, if direct-product\odot applies ~~tensor-product\tilde{\otimes}over~ start_ARG ⊗ end_ARG column-wise, the optimization eq. 3.12 has a unique solution. Similar adjustments can be made for higher-order Kronecker products.

3.3 Intrusive reduced-order models for quadratic systems

The key observation in projection-based model reduction is that projection preserves certain structure. Suppose that the function 𝐟𝐟\mathbf{f}bold_f defining the dynamics of the FOM eq. 3.1 has linear-quadratic structure, i.e.,

ddt𝐪(t)=𝐟(𝐪(t))𝐀𝐪(t)+𝐇[𝐪(t)𝐪(t)],dd𝑡𝐪𝑡𝐟𝐪𝑡𝐀𝐪𝑡𝐇delimited-[]tensor-product𝐪𝑡𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{f}(\mathbf{q}% (t))\coloneqq\mathbf{A}\mathbf{q}(t)+\mathbf{H}[\mathbf{q}(t)\otimes\mathbf{q}% (t)],divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_f ( bold_q ( italic_t ) ) ≔ bold_Aq ( italic_t ) + bold_H [ bold_q ( italic_t ) ⊗ bold_q ( italic_t ) ] , (3.14)

where 𝐀nq×nq\mathbf{A}\in{}^{n_{q}\times n_{q}}bold_A ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, 𝐇nq×nq2\mathbf{H}\in{}^{n_{q}\times n_{q}^{2}}bold_H ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. It is assumed that 𝐇𝐇\mathbf{H}bold_H is symmetric in the sense that 𝐇[𝐪𝐩]=𝐇[𝐩𝐪]𝐇delimited-[]tensor-product𝐪𝐩𝐇delimited-[]tensor-product𝐩𝐪\mathbf{H}[\mathbf{q}\otimes\mathbf{p}]=\mathbf{H}[\mathbf{p}\otimes\mathbf{q}]bold_H [ bold_q ⊗ bold_p ] = bold_H [ bold_p ⊗ bold_q ] for all 𝐪,𝐩nq\mathbf{q},\mathbf{p}\in{}^{n_{q}}bold_q , bold_p ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. Models with quadratic structure arise from quadratic PDEs, but can also result from applying lifting transformations to models with other structure [30, 43]. With a linear state approximation (𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\bf 0over¯ start_ARG bold_q end_ARG = bold_0 and 𝐖=𝟎𝐖0\mathbf{W}=\bf 0bold_W = bold_0), the ROM eq. 3.8 can be written as

ddt𝐪~(t)=𝐀~𝐪~(t)+𝐇~[𝐪~(t)𝐪~(t)],𝐪~(0)=𝐕𝖳𝐪0(𝝁),formulae-sequencedd𝑡~𝐪𝑡~𝐀~𝐪𝑡~𝐇delimited-[]tensor-product~𝐪𝑡~𝐪𝑡~𝐪0superscript𝐕𝖳subscript𝐪0𝝁\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}}[\tilde{\mathbf{q}}(t)% \otimes\tilde{\mathbf{q}}(t)],\qquad\tilde{\mathbf{q}}(0)=\mathbf{V}^{\mathsf{% T}}\mathbf{q}_{0}({\boldsymbol{\mu}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , over~ start_ARG bold_q end_ARG ( 0 ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (3.15)

in which 𝐀~=𝐕𝖳𝐀𝐕r×r\tilde{\mathbf{A}}=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}\in{}^{r\times r}over~ start_ARG bold_A end_ARG = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT and 𝐇~=𝐕𝖳𝐇[𝐕𝐕]r×r2\tilde{\mathbf{H}}=\mathbf{V}^{\mathsf{T}}\mathbf{H}[\mathbf{V}\otimes\mathbf{% V}]\in{}^{r\times r^{2}}over~ start_ARG bold_H end_ARG = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H [ bold_V ⊗ bold_V ] ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. Constructing eq. 3.15 is an intrusive process because 𝐀~~𝐀\tilde{\mathbf{A}}over~ start_ARG bold_A end_ARG and 𝐇~~𝐇\tilde{\mathbf{H}}over~ start_ARG bold_H end_ARG depend explicitly on 𝐀𝐀\mathbf{A}bold_A and 𝐇𝐇\mathbf{H}bold_H; however, we need not have access to 𝐀𝐀\mathbf{A}bold_A and 𝐇𝐇\mathbf{H}bold_H to observe that the quadratic structure is preserved.

In the QM case (𝐖𝟎𝐖0\mathbf{W}\neq\bf 0bold_W ≠ bold_0, but still with 𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\bf 0over¯ start_ARG bold_q end_ARG = bold_0 for convenience), the ROM eq. 3.8 has quartic dynamics,

ddt𝐪~(t)=𝐀~𝐪~(t)+𝐇~2[𝐪~(t)𝐪~(t)]+𝐇~3[𝐪~(t)𝐪~(t)𝐪~(t)]+𝐇~4[𝐪~(t)𝐪~(t)𝐪~(t)𝐪~(t)],𝐪~(0)=𝐕𝖳𝐪0(𝝁),dd𝑡~𝐪𝑡absent~𝐀~𝐪𝑡subscript~𝐇2delimited-[]tensor-product~𝐪𝑡~𝐪𝑡subscript~𝐇3delimited-[]tensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡subscript~𝐇4delimited-[]tensor-producttensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡~𝐪𝑡~𝐪0absentsuperscript𝐕𝖳subscript𝐪0𝝁\displaystyle\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(% t)&=\tilde{\mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}}_{2}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]+\tilde{\mathbf{H}}_{3}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]+\tilde% {\mathbf{H}}_{4}[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\otimes% \tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)],\\ \tilde{\mathbf{q}}(0)&=\mathbf{V}^{\mathsf{T}}\mathbf{q}_{0}({\boldsymbol{\mu}% }),\end{aligned}start_ROW start_CELL divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) end_CELL start_CELL = over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , end_CELL end_ROW start_ROW start_CELL over~ start_ARG bold_q end_ARG ( 0 ) end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , end_CELL end_ROW (3.16)

where 𝐀~=𝐕𝖳𝐀𝐕~𝐀superscript𝐕𝖳𝐀𝐕\tilde{\mathbf{A}}=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}over~ start_ARG bold_A end_ARG = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV, 𝐇~2=𝐕𝖳𝐀𝐖+𝐕𝖳𝐇(𝐕𝐕)subscript~𝐇2superscript𝐕𝖳𝐀𝐖superscript𝐕𝖳𝐇tensor-product𝐕𝐕\tilde{\mathbf{H}}_{2}=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{W}+\mathbf{V}^% {\mathsf{T}}\mathbf{H}(\mathbf{V}\otimes\mathbf{V})over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW + bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_V ⊗ bold_V ), 𝐇~3=𝐕𝖳𝐇(𝐕𝐖+𝐖𝐕)subscript~𝐇3superscript𝐕𝖳𝐇tensor-product𝐕𝐖tensor-product𝐖𝐕\tilde{\mathbf{H}}_{3}=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{V}\otimes% \mathbf{W}+\mathbf{W}\otimes\mathbf{V})over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_V ⊗ bold_W + bold_W ⊗ bold_V ), and 𝐇~4=𝐕𝖳𝐇(𝐖𝐖)subscript~𝐇4superscript𝐕𝖳𝐇tensor-product𝐖𝐖\tilde{\mathbf{H}}_{4}=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{W}\otimes% \mathbf{W})over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_W ⊗ bold_W ). Again, this process is intrusive, but the key result is that if one knows the structure of the FOM dynamics, one can also deduce the structure of the projection-based ROM. See Appendix A for the case when 𝐪¯𝟎¯𝐪0\bar{\mathbf{q}}\neq\bf 0over¯ start_ARG bold_q end_ARG ≠ bold_0, in which a constant term appears in the reduced dynamics.

4 Non-intrusive model reduction via kernel interpolation

This section leverages regularized kernel interpolation to construct ROMs akin to eq. 3.8, denoted

ddt𝐪^(t)=𝐟^(𝐪^(t)),𝐪^(0)=𝐕𝖳(𝐪0(𝝁)𝐪¯),formulae-sequencedd𝑡^𝐪𝑡^𝐟^𝐪𝑡^𝐪0superscript𝐕𝖳subscript𝐪0𝝁¯𝐪\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{f}% }(\hat{\mathbf{q}}(t)),\qquad\hat{\mathbf{q}}(0)=\mathbf{V}^{\mathsf{T}}(% \mathbf{q}_{0}({\boldsymbol{\mu}})-\bar{\mathbf{q}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , over^ start_ARG bold_q end_ARG ( 0 ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) - over¯ start_ARG bold_q end_ARG ) , (4.1)

where 𝐪^:[0,T]r\hat{\mathbf{q}}:[0,T]\to{}^{r}over^ start_ARG bold_q end_ARG : [ 0 , italic_T ] → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT and 𝐟^:rr\hat{\mathbf{f}}:{}^{r}\to{}^{r}over^ start_ARG bold_f end_ARG : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT. The structure of 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG can be informed by intrusive projection, but unlike projection, defining 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG through kernel interpolation does not require access to FOM operators such as 𝐀𝐀\mathbf{A}bold_A or 𝐇𝐇\mathbf{H}bold_H in eq. 3.14. We use the notation ^^\hat{\cdot}over^ start_ARG ⋅ end_ARG to mark non-intrusive objects and differentiate from intrusive objects, which are marked with ~~\tilde{\cdot}over~ start_ARG ⋅ end_ARG.

4.1 Kernel reduced-order models

We pose the problem of learning an appropriate 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG for the ROM eq. 4.1 as a regression, which requires data for the state 𝐪^(t)^𝐪𝑡\hat{\mathbf{q}}(t)over^ start_ARG bold_q end_ARG ( italic_t ) and its time derivative. For the former, we reduce the FOM snapshots eq. 3.9 using the compression map 𝐡𝐡\mathbf{h}bold_h, that is,

𝐪^k()𝐡(𝐪k())=𝐕𝖳(𝐪k()𝐪¯).r\displaystyle\hat{\mathbf{q}}_{k}^{(\ell)}\coloneqq\mathbf{h}(\mathbf{q}_{k}^{% (\ell)})=\mathbf{V}^{\mathsf{T}}(\mathbf{q}_{k}^{(\ell)}-\bar{\mathbf{q}})\in{% }^{r}.over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ≔ bold_h ( bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - over¯ start_ARG bold_q end_ARG ) ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT . (4.2)

If the time step between observations is sufficiently small, an accurate approximation for the time derivatives of the state can be computed from finite differences of the reduced states, for example,

𝐪^˙k()𝐪^k𝐪^k1tktk1ddt𝐪^(t)|t=tk.superscriptsubscript˙^𝐪𝑘superscriptsubscript^𝐪𝑘superscriptsubscript^𝐪𝑘1subscript𝑡𝑘subscript𝑡𝑘1evaluated-atdd𝑡^𝐪𝑡𝑡subscript𝑡𝑘\displaystyle\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}\coloneqq\frac{\hat{\mathbf{q}% }_{k}^{\ell}-\hat{\mathbf{q}}_{k-1}^{\ell}}{t_{k}-t_{k-1}}\approx\frac{\textrm% {d}}{\textrm{d}t}\hat{\mathbf{q}}(t)\big{|}_{t=t_{k}}.over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ≔ divide start_ARG over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT - over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT end_ARG ≈ divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) | start_POSTSUBSCRIPT italic_t = italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT . (4.3)

The ROM function 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG can then be defined as the solution to a minimization problem,

𝐟^=argmin𝐬S=1Mk=0nt𝐪^˙k()𝐬(𝐪^k())22+R(𝐬),^𝐟𝐬𝑆superscriptsubscript1𝑀superscriptsubscript𝑘0subscript𝑛𝑡superscriptsubscriptnormsuperscriptsubscript˙^𝐪𝑘𝐬superscriptsubscript^𝐪𝑘22𝑅𝐬\displaystyle\hat{\mathbf{f}}=\underset{\mathbf{s}\in S}{\arg\min}\;\sum_{\ell% =1}^{M}\sum_{k=0}^{n_{t}}\left\|\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}-\mathbf{s}% (\hat{\mathbf{q}}_{k}^{(\ell)})\right\|_{2}^{2}+R(\mathbf{s}),over^ start_ARG bold_f end_ARG = start_UNDERACCENT bold_s ∈ italic_S end_UNDERACCENT start_ARG roman_arg roman_min end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - bold_s ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R ( bold_s ) , (4.4)

where S𝑆Sitalic_S is some set of functions and R:S0R:S\to{}_{\geq 0}italic_R : italic_S → start_FLOATSUBSCRIPT ≥ 0 end_FLOATSUBSCRIPT is a regularization function.

The generic minimization eq. 4.4 encompasses several data-driven approaches which each use different choices for the space S𝑆Sitalic_S and the regularizer R𝑅Ritalic_R. By defining a kernel K𝐾Kitalic_K and an associated RKHS S=Kr𝑆superscriptsubscript𝐾𝑟S=\mathcal{H}_{K}^{r}italic_S = caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT, and setting R(𝐬)=γ𝐬Kr𝑅𝐬𝛾subscriptnorm𝐬superscriptsubscript𝐾𝑟R(\mathbf{s})=\gamma\|\mathbf{s}\|_{\mathcal{H}_{K}^{r}}italic_R ( bold_s ) = italic_γ ∥ bold_s ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, we obtain a vector regularized kernel interpolation problem,

𝐟^=argmin𝐬Kr=1Mk=0nt𝐪^˙k()𝐬(𝐪^k())22+γ𝐬Kr2,^𝐟𝐬superscriptsubscript𝐾𝑟superscriptsubscript1𝑀superscriptsubscript𝑘0subscript𝑛𝑡superscriptsubscriptnormsuperscriptsubscript˙^𝐪𝑘𝐬superscriptsubscript^𝐪𝑘22𝛾superscriptsubscriptnorm𝐬superscriptsubscript𝐾𝑟2\displaystyle\hat{\mathbf{f}}=\underset{\mathbf{s}\in{\cal H}_{K}^{r}}{\arg% \min}\;\sum_{\ell=1}^{M}\sum_{k=0}^{n_{t}}\left\|\dot{\hat{\mathbf{q}}}_{k}^{(% \ell)}-\mathbf{s}(\hat{\mathbf{q}}_{k}^{(\ell)})\right\|_{2}^{2}+\gamma\left\|% \mathbf{s}\right\|_{{\cal H}_{K}^{r}}^{2},over^ start_ARG bold_f end_ARG = start_UNDERACCENT bold_s ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_UNDERACCENT start_ARG roman_arg roman_min end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - bold_s ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ ∥ bold_s ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (4.5)

which is eq. 2.6 with 𝐱j=𝐪^k()subscript𝐱𝑗superscriptsubscript^𝐪𝑘\mathbf{x}_{j}=\hat{\mathbf{q}}_{k}^{(\ell)}bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT, 𝐲j=𝐪^˙k()subscript𝐲𝑗superscriptsubscript˙^𝐪𝑘\mathbf{y}_{j}=\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT and m=M(nt+1)𝑚𝑀subscript𝑛𝑡1m=M(n_{t}+1)italic_m = italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) after some minor reindexing for k𝑘kitalic_k and \ellroman_ℓ. Corollary 2.1 gives an explicit representation for 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG, resulting in the ROM

ddt𝐪^(t)=𝐟^(𝐪^(t))𝛀𝖳K(𝐐^,𝐪^(t)),𝐪^(0)=𝐕𝖳(𝐪0(𝝁)𝐪¯),formulae-sequencedd𝑡^𝐪𝑡^𝐟^𝐪𝑡superscript𝛀𝖳𝐾^𝐐^𝐪𝑡^𝐪0superscript𝐕𝖳subscript𝐪0𝝁¯𝐪\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{f}% }(\hat{\mathbf{q}}(t))\coloneqq{\boldsymbol{\Omega}}^{\mathsf{T}}K(\hat{% \mathbf{Q}},\hat{\mathbf{q}}(t)),\qquad\hat{\mathbf{q}}(0)=\mathbf{V}^{\mathsf% {T}}(\mathbf{q}_{0}({\boldsymbol{\mu}})-\bar{\mathbf{q}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ≔ bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT italic_K ( over^ start_ARG bold_Q end_ARG , over^ start_ARG bold_q end_ARG ( italic_t ) ) , over^ start_ARG bold_q end_ARG ( 0 ) = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) - over¯ start_ARG bold_q end_ARG ) , (4.6a)
where 𝛀M(nt+1)×r{\boldsymbol{\Omega}}\in{}^{M(n_{t}+1)\times r}bold_Ω ∈ start_FLOATSUPERSCRIPT italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) × italic_r end_FLOATSUPERSCRIPT solves the linear system
(K(𝐐^,𝐐^)+γ𝐈)𝛀=𝐙^𝖳,𝐾^𝐐^𝐐𝛾𝐈𝛀superscript^𝐙𝖳\displaystyle\big{(}K(\hat{\mathbf{Q}},\hat{\mathbf{Q}})+\gamma\mathbf{I}\big{% )}{\boldsymbol{\Omega}}=\hat{\mathbf{Z}}^{\mathsf{T}},( italic_K ( over^ start_ARG bold_Q end_ARG , over^ start_ARG bold_Q end_ARG ) + italic_γ bold_I ) bold_Ω = over^ start_ARG bold_Z end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT , (4.6b)
with interpolation input and output matrices
𝐐^=[𝐪^0(1)𝐪^nt(1)𝐪^0(2)𝐪^nt(M)],r×M(nt+1)𝐙^=[𝐪^˙0(1)𝐪^˙nt(1)𝐪^˙0(2)𝐪^˙nt(M)].r×M(nt+1)\displaystyle\begin{aligned} \hat{\mathbf{Q}}&=\begin{bmatrix}\hat{\mathbf{q}}% _{0}^{(1)}&\cdots&\hat{\mathbf{q}}_{n_{t}}^{(1)}&\hat{\mathbf{q}}_{0}^{(2)}&% \cdots&\hat{\mathbf{q}}_{n_{t}}^{(M)}\end{bmatrix}\in{}^{r\times M(n_{t}+1)},% \\ \hat{\mathbf{Z}}&=\begin{bmatrix}\dot{\hat{\mathbf{q}}}_{0}^{(1)}&\cdots&\dot{% \hat{\mathbf{q}}}_{n_{t}}^{(1)}&\dot{\hat{\mathbf{q}}}_{0}^{(2)}&\cdots&\dot{% \hat{\mathbf{q}}}_{n_{t}}^{(M)}\end{bmatrix}\in{}^{r\times M(n_{t}+1)}.\end{aligned}start_ROW start_CELL over^ start_ARG bold_Q end_ARG end_CELL start_CELL = [ start_ARG start_ROW start_CELL over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_M ) end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_r × italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) end_FLOATSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_Z end_ARG end_CELL start_CELL = [ start_ARG start_ROW start_CELL over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT end_CELL start_CELL over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_M ) end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] ∈ start_FLOATSUPERSCRIPT italic_r × italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) end_FLOATSUPERSCRIPT . end_CELL end_ROW (4.6c)

Note that the cost of evaluating 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG is 𝒪(rMnt)𝒪𝑟𝑀subscript𝑛𝑡\mathcal{O}(rMn_{t})caligraphic_O ( italic_r italic_M italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ), plus the cost of evaluating the kernel term K(𝐐^,𝐪^(t))𝐾^𝐐^𝐪𝑡K(\hat{\mathbf{Q}},\hat{\mathbf{q}}(t))italic_K ( over^ start_ARG bold_Q end_ARG , over^ start_ARG bold_q end_ARG ( italic_t ) ).

Remark 4.1.

If the time derivatives of the FOM snapshots ddt𝐪k()dd𝑡superscriptsubscript𝐪𝑘\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}_{k}^{(\ell)}divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT are available, the time derivatives of the reduced state can instead be computed as

𝐪^˙k()=ddt𝐪^k()superscriptsubscript˙^𝐪𝑘dd𝑡superscriptsubscript^𝐪𝑘\displaystyle\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}=\frac{\textrm{d}}{\textrm{d}t% }\hat{\mathbf{q}}_{k}^{(\ell)}over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT = divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ddt(𝐡(𝐪k()))=𝐡(𝐪k())ddt𝐪k()=𝐕𝖳ddt𝐪k().absentdd𝑡𝐡superscriptsubscript𝐪𝑘superscript𝐡superscriptsubscript𝐪𝑘dd𝑡superscriptsubscript𝐪𝑘superscript𝐕𝖳dd𝑡superscriptsubscript𝐪𝑘\displaystyle\approx\frac{\textrm{d}}{\textrm{d}t}(\mathbf{h}(\mathbf{q}_{k}^{% (\ell)}))=\mathbf{h}^{\prime}(\mathbf{q}_{k}^{(\ell)})\frac{\textrm{d}}{% \textrm{d}t}\mathbf{q}_{k}^{(\ell)}=\mathbf{V}^{\mathsf{T}}\frac{\textrm{d}}{% \textrm{d}t}\mathbf{q}_{k}^{(\ell)}.≈ divide start_ARG d end_ARG start_ARG d italic_t end_ARG ( bold_h ( bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) ) = bold_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT . (4.7)

4.2 Specifying structure through kernel design

We now employ the observations of Section 2.3 to endow Kernel ROMs with structure. If the structure of the FOM function 𝐟𝐟\mathbf{f}bold_f is unknown, an RBF kernel is a reasonable general-purpose choice for K𝐾Kitalic_K. However, if the structure of 𝐟𝐟\mathbf{f}bold_f is known, a feature map kernel can be employed so that the resulting 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG has the same structure of the intrusive projection-based ROM function 𝐟~~𝐟\tilde{\mathbf{f}}over~ start_ARG bold_f end_ARG. This is best shown by example.

Consider again the quartic QM ROM eq. 3.16. Using the quartic feature map ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ of eq. 2.17 (with 𝐱=𝐪^𝐱^𝐪\mathbf{x}=\hat{\mathbf{q}}bold_x = over^ start_ARG bold_q end_ARG and nx=rsubscript𝑛𝑥𝑟n_{x}=ritalic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_r) to define a feature map kernel K(𝐪^,𝐪^)=ϕ(𝐪^)𝖳𝐆ϕ(𝐪^)𝐾^𝐪superscript^𝐪bold-italic-ϕsuperscript^𝐪𝖳𝐆bold-italic-ϕsuperscript^𝐪K(\hat{\mathbf{q}},\hat{\mathbf{q}}^{\prime})={\boldsymbol{\phi}}(\hat{\mathbf% {q}})^{\mathsf{T}}\mathbf{G}{\boldsymbol{\phi}}(\hat{\mathbf{q}}^{\prime})italic_K ( over^ start_ARG bold_q end_ARG , over^ start_ARG bold_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( over^ start_ARG bold_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ), the Kernel ROM eq. 4.6 takes the form

ddt𝐪^(t)=𝐂ϕ(𝐪^(t))=𝐀^𝐪^(t)+𝐇^2[𝐪^(t)𝐪^(t)]+𝐇^3[𝐪^(t)𝐪^(t)𝐪^(t)]+𝐇^4[𝐪^(t)𝐪^(t)𝐪^(t)𝐪^(t)],dd𝑡^𝐪𝑡absent𝐂bold-italic-ϕ^𝐪𝑡missing-subexpressionabsent^𝐀^𝐪𝑡subscript^𝐇2delimited-[]tensor-product^𝐪𝑡^𝐪𝑡subscript^𝐇3delimited-[]tensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡subscript^𝐇4delimited-[]tensor-producttensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡^𝐪𝑡\displaystyle\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)% &=\mathbf{C}{\boldsymbol{\phi}}(\hat{\mathbf{q}}(t))\\ &=\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+\hat{\mathbf{H}}_{2}[\hat{\mathbf{q}}(t)% \otimes\hat{\mathbf{q}}(t)]+\hat{\mathbf{H}}_{3}[\hat{\mathbf{q}}(t)\otimes% \hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)]+\hat{\mathbf{H}}_{4}[\hat{% \mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat{% \mathbf{q}}(t)],\end{aligned}start_ROW start_CELL divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) end_CELL start_CELL = bold_C bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] , end_CELL end_ROW (4.8)

in which 𝐂=𝛀𝖳ϕ(𝐐^)𝖳𝐆=[𝐀^𝐇^2𝐇^3𝐇^4]𝐂superscript𝛀𝖳bold-italic-ϕsuperscript^𝐐𝖳𝐆delimited-[]^𝐀subscript^𝐇2subscript^𝐇3subscript^𝐇4\mathbf{C}={\boldsymbol{\Omega}}^{\mathsf{T}}{\boldsymbol{\phi}}(\hat{\mathbf{% Q}})^{\mathsf{T}}\mathbf{G}=[~{}\hat{\mathbf{A}}~{}~{}\hat{\mathbf{H}}_{2}~{}~% {}\hat{\mathbf{H}}_{3}~{}~{}\hat{\mathbf{H}}_{4}~{}]bold_C = bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G = [ over^ start_ARG bold_A end_ARG over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ]. This ROM has the same dynamical structure as eq. 3.16 but can be constructed non-intrusively. The structure can be tailored by adjusting the feature map: if the FOM eq. 3.14 is linear (𝐇=𝟎𝐇0\mathbf{H}=\bf 0bold_H = bold_0), then the intrusive QM ROM eq. 3.16 simplifies to a quadratic form,

ddt𝐪~(t)=𝐀~𝐪~(t)+𝐇~1[𝐪~(t)𝐪~(t)],𝐇~1=𝐕𝖳𝐀𝐖,formulae-sequencedd𝑡~𝐪𝑡~𝐀~𝐪𝑡subscript~𝐇1delimited-[]tensor-product~𝐪𝑡~𝐪𝑡subscript~𝐇1superscript𝐕𝖳𝐀𝐖\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}}_{1}[\tilde{\mathbf{q}}(t)% \otimes\tilde{\mathbf{q}}(t)],\qquad\tilde{\mathbf{H}}_{1}=\mathbf{V}^{\mathsf% {T}}\mathbf{A}\mathbf{W},divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW , (4.9)

which can be mimicked by a Kernel ROM by employing a linear-quadratic feature map as in eq. 2.13.

Remark 4.2 (Input terms).

Kernel ROMs can be designed to account for known input terms by including them in the feature map. Suppose we wish to construct a ROM with the structure

ddt𝐪~(t)=𝐟~(𝐪~(t))+𝐛~(𝐮(t)),dd𝑡~𝐪𝑡~𝐟~𝐪𝑡~𝐛𝐮𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{f}}(\tilde{\mathbf{q}}(t))+\tilde{\mathbf{b}}(\mathbf{u}(t)),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_f end_ARG ( over~ start_ARG bold_q end_ARG ( italic_t ) ) + over~ start_ARG bold_b end_ARG ( bold_u ( italic_t ) ) , (4.10)

where 𝐛~:nur\tilde{\mathbf{b}}:{}^{n_{u}}\to{}^{r}over~ start_ARG bold_b end_ARG : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT and 𝐮:[0,T]nu\mathbf{u}:[0,T]\to{}^{n_{u}}bold_u : [ 0 , italic_T ] → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT model, for example, time-varying boundary conditions or forcing terms. In this case, we can construct feature maps ϕqsubscriptbold-ϕ𝑞{\boldsymbol{\phi}}_{q}bold_italic_ϕ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT and ϕusubscriptbold-ϕ𝑢{\boldsymbol{\phi}}_{u}bold_italic_ϕ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT which aim to emulate the structures of 𝐟~~𝐟\tilde{\mathbf{f}}over~ start_ARG bold_f end_ARG and 𝐛~~𝐛\tilde{\mathbf{b}}over~ start_ARG bold_b end_ARG, respectively, and define a concatenated feature map

ϕ(𝐪^;𝐮)=[ϕq(𝐪^)ϕu(𝐮)].bold-italic-ϕ^𝐪𝐮matrixsubscriptbold-italic-ϕ𝑞^𝐪subscriptbold-italic-ϕ𝑢𝐮\displaystyle{\boldsymbol{\phi}}(\hat{\mathbf{q}};\mathbf{u})=\begin{bmatrix}{% \boldsymbol{\phi}}_{q}(\hat{\mathbf{q}})\\ {\boldsymbol{\phi}}_{u}(\mathbf{u})\end{bmatrix}.bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ; bold_u ) = [ start_ARG start_ROW start_CELL bold_italic_ϕ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ) end_CELL end_ROW start_ROW start_CELL bold_italic_ϕ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( bold_u ) end_CELL end_ROW end_ARG ] . (4.11)

The resulting Kernel ROM has the form

ddt𝐪^(t)=𝐂qϕq(𝐪^(t))+𝐂uϕu(𝐮(t)),dd𝑡^𝐪𝑡subscript𝐂𝑞subscriptbold-italic-ϕ𝑞^𝐪𝑡subscript𝐂𝑢subscriptbold-italic-ϕ𝑢𝐮𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\mathbf{C}_{q}{% \boldsymbol{\phi}}_{q}(\hat{\mathbf{q}}(t))+\mathbf{C}_{u}{\boldsymbol{\phi}}_% {u}(\mathbf{u}(t)),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = bold_C start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT bold_italic_ϕ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + bold_C start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT bold_italic_ϕ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( bold_u ( italic_t ) ) , (4.12)

whose structure can be tailored to that of eq. 4.10 by designing ϕqsubscriptbold-ϕ𝑞{\boldsymbol{\phi}}_{q}bold_italic_ϕ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT and ϕusubscriptbold-ϕ𝑢{\boldsymbol{\phi}}_{u}bold_italic_ϕ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT appropriately.

As discussed in Section 2.3, feature map kernels can lead to cost savings over generic kernels. Let nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT be the dimension of the feature map, i.e., ϕ(𝐪^)nϕ{\boldsymbol{\phi}}(\hat{\mathbf{q}})\in{}^{n_{\phi}}bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. Because the matrix 𝐂r×nϕ\mathbf{C}\in{}^{r\times n_{\phi}}bold_C ∈ start_FLOATSUPERSCRIPT italic_r × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT can be computed once and reused, the cost of evaluating the ROM function 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG online is 𝒪(rnϕ)𝒪𝑟subscript𝑛italic-ϕ\mathcal{O}(rn_{\phi})caligraphic_O ( italic_r italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ). Hence, if nϕ<Mntsubscript𝑛italic-ϕ𝑀subscript𝑛𝑡n_{\phi}<Mn_{t}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT < italic_M italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, a feature map kernel is less expensive to evaluate than a generic kernel. If nϕ>Mntsubscript𝑛italic-ϕ𝑀subscript𝑛𝑡n_{\phi}>Mn_{t}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT > italic_M italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (e.g., due to a moderate reduced state dimension r𝑟ritalic_r), it can be beneficial to reduce nϕsubscript𝑛italic-ϕn_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT and add a more generic element to the kernel to compensate. For instance, in place of the quartic ROM eq. 4.8, we may choose a quadratic feature map and add an RBF term to account for the cubic and quartic nonlinearities, resulting in a ROM of the form

ddt𝐪^(t)=𝐀^𝐪^(t)+𝐇^[𝐪^(t)𝐪^(t)]+cψ𝛀𝖳𝝍ϵ(𝐪^(t)),dd𝑡^𝐪𝑡^𝐀^𝐪𝑡^𝐇delimited-[]tensor-product^𝐪𝑡^𝐪𝑡subscript𝑐𝜓superscript𝛀𝖳subscript𝝍italic-ϵ^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{A}% }\hat{\mathbf{q}}(t)+\hat{\mathbf{H}}[\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q% }}(t)]+c_{\psi}{\boldsymbol{\Omega}}^{\mathsf{T}}{\boldsymbol{\psi}}_{\!% \epsilon}(\hat{\mathbf{q}}(t)),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over^ start_ARG bold_H end_ARG [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , (4.13)

where 𝝍ϵ:rM(nt+1){\boldsymbol{\psi}}_{\!\epsilon}:{}^{r}\to{}^{M(n_{t}+1)}bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) end_FLOATSUPERSCRIPT is as in eq. 2.11 and cψ>0subscript𝑐𝜓0c_{\psi}>0italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT > 0 is a weighting coefficient as in eq. 2.15b. We test ROMs with this hybrid structure in Section 6. Note that this strategy can also apply to cases where the desired ROM structure is only partially known or representable by a feature map kernel.

4.3 Comparison to operator inference

Our kernel-based method is philosophically similar to the operator inference (OpInf) framework pioneered in [40], with a few key differences. Like our method, OpInf stipulates the form of a ROM based on structure that arises from intrusive projection, and the objects defining the ROM are learned from a regression problem of reduced states and corresponding time derivatives. However, the learning problems in each approach use different candidate function spaces and regularizers, resulting in different ROMs even when the same training data and model structure are used for both procedures.

Generally speaking, OpInf constructs ROMs of the form

ddt𝐪^(t)=𝐎^ϕ(𝐪^(t))dd𝑡^𝐪𝑡^𝐎bold-italic-ϕ^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{O}% }{\boldsymbol{\phi}}(\hat{\mathbf{q}}(t))divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_O end_ARG bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) (4.14a)
for a specified feature map ϕ:rnϕ{\boldsymbol{\phi}}:{}^{r}\to{}^{n_{\phi}}bold_italic_ϕ : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT by solving the regularized residual minimization problem
min𝐎^r×nϕ=1Mk=0nt𝐪^˙k()𝐎^ϕ(𝐪^k())22+𝚪𝐎^𝖳F2,\displaystyle\min_{\hat{\mathbf{O}}\in{}^{r\times n_{\phi}}}\;\sum_{\ell=1}^{M% }\sum_{k=0}^{n_{t}}\left\|\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}-\hat{\mathbf{O}}% {\boldsymbol{\phi}}(\hat{\mathbf{q}}_{k}^{(\ell)})\right\|_{2}^{2}+\|{% \boldsymbol{\Gamma}}\hat{\mathbf{O}}^{\mathsf{T}}\|_{F}^{2},roman_min start_POSTSUBSCRIPT over^ start_ARG bold_O end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - over^ start_ARG bold_O end_ARG bold_italic_ϕ ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ bold_Γ over^ start_ARG bold_O end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (4.14b)

where 𝚪nϕ×nϕ{\boldsymbol{\Gamma}}\in{}^{n_{\phi}\times n_{\phi}}bold_Γ ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. This is the generic learning problem eq. 4.4 with the function space S𝑆Sitalic_S given by

Sϕ={𝐬:r:r𝐬(𝐪^)=𝐎^ϕ(𝐪^)for some𝐎^}r×nϕ,\displaystyle S_{{\boldsymbol{\phi}}}=\left\{\mathbf{s}:{}^{r}\to{}^{r}\;:\;% \mathbf{s}(\hat{\mathbf{q}})=\hat{\mathbf{O}}{\boldsymbol{\phi}}(\hat{\mathbf{% q}})\quad\textup{for some}\quad\hat{\mathbf{O}}\in{}^{r\times n_{\phi}}\right\},italic_S start_POSTSUBSCRIPT bold_italic_ϕ end_POSTSUBSCRIPT = { bold_s : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT : bold_s ( over^ start_ARG bold_q end_ARG ) = over^ start_ARG bold_O end_ARG bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) for some over^ start_ARG bold_O end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT } , (4.15)

and where R𝑅Ritalic_R is a Tikhonov regularizer. The so-called operator matrix 𝐎^^𝐎\hat{\mathbf{O}}over^ start_ARG bold_O end_ARG satisfies the linear system

(𝐃𝖳𝐃+𝚪𝖳𝚪)𝐎^𝖳=𝐃𝖳𝐙^𝖳,superscript𝐃𝖳𝐃superscript𝚪𝖳𝚪superscript^𝐎𝖳superscript𝐃𝖳superscript^𝐙𝖳\displaystyle(\mathbf{D}^{\mathsf{T}}\mathbf{D}+{\boldsymbol{\Gamma}}^{\mathsf% {T}}{\boldsymbol{\Gamma}})\hat{\mathbf{O}}^{\mathsf{T}}=\mathbf{D}^{\mathsf{T}% }\hat{\mathbf{Z}}^{\mathsf{T}},( bold_D start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_D + bold_Γ start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_Γ ) over^ start_ARG bold_O end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT = bold_D start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT over^ start_ARG bold_Z end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT , (4.16)

where 𝐃=ϕ(𝐐^)𝖳𝐃bold-italic-ϕsuperscript^𝐐𝖳\mathbf{D}={\boldsymbol{\phi}}(\hat{\mathbf{Q}})^{\mathsf{T}}bold_D = bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT and 𝐐^^𝐐\hat{\mathbf{Q}}over^ start_ARG bold_Q end_ARG and 𝐙^^𝐙\hat{\mathbf{Z}}over^ start_ARG bold_Z end_ARG are the training data matrices in eq. 4.6c. As with our kernel-based approach, the feature map is chosen to emulate the structure of a projection-based ROM. For example, the OpInf regression to learn a linear-quadratic ROM of the form eq. 3.15 is given by

min𝐀^,r×r𝐇^r×r2=1Mk=0nt𝐪^˙k()(𝐀^𝐪^k()+𝐇^[𝐪^k()𝐪^k()])22+𝚪[𝐀^𝐇^]𝖳F2,\displaystyle\min_{\hat{\mathbf{A}}\in{}^{r\times r},\hat{\mathbf{H}}\in{}^{r% \times r^{2}}}\;\sum_{\ell=1}^{M}\sum_{k=0}^{n_{t}}\left\|\dot{\hat{\mathbf{q}% }}_{k}^{(\ell)}-\left(\hat{\mathbf{A}}\hat{\mathbf{q}}_{k}^{(\ell)}+\hat{% \mathbf{H}}[\hat{\mathbf{q}}_{k}^{(\ell)}\otimes\hat{\mathbf{q}}_{k}^{(\ell)}]% \right)\right\|_{2}^{2}+\left\|{\boldsymbol{\Gamma}}[~{}\hat{\mathbf{A}}~{}~{}% \hat{\mathbf{H}}~{}]^{\mathsf{T}}\right\|_{F}^{2},roman_min start_POSTSUBSCRIPT over^ start_ARG bold_A end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT , over^ start_ARG bold_H end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - ( over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT + over^ start_ARG bold_H end_ARG [ over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ⊗ over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ] ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ bold_Γ [ over^ start_ARG bold_A end_ARG over^ start_ARG bold_H end_ARG ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (4.17)

and the solution 𝐎^=[𝐀^𝐇^]^𝐎delimited-[]^𝐀^𝐇\hat{\mathbf{O}}=[~{}\hat{\mathbf{A}}~{}~{}\hat{\mathbf{H}}~{}]over^ start_ARG bold_O end_ARG = [ over^ start_ARG bold_A end_ARG over^ start_ARG bold_H end_ARG ] satisfies eq. 4.16 with 𝐃=[𝐐^𝖳(𝐐^𝐐^)𝖳]M(nt+1)×(r+r2)\mathbf{D}=[~{}\hat{\mathbf{Q}}^{\mathsf{T}}~{}~{}(\hat{\mathbf{Q}}\odot\hat{% \mathbf{Q}})^{\mathsf{T}}~{}]\in{}^{M(n_{t}+1)\times(r+r^{2})}bold_D = [ over^ start_ARG bold_Q end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( over^ start_ARG bold_Q end_ARG ⊙ over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ] ∈ start_FLOATSUPERSCRIPT italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) × ( italic_r + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_FLOATSUPERSCRIPT. The underlying feature map in this case is the linear-quadratic map eq. 2.13. In practice, the compressed Kronecker product of Remark 3.1 is used so that eq. 4.17 has a unique solution.

For a kernel ROM with the kernel specified entirely by a feature map, the resulting ROM can be expressed in terms of the training data and the feature map as

ddt𝐪^(t)=𝐙^(K(𝐐^,𝐐^)+γ𝐈)1K(𝐐^,𝐪^(t))=𝐙^(ϕ(𝐐^)𝖳𝐆ϕ(𝐐^)+γ𝐈)1ϕ(𝐐^)𝖳𝐆𝐂ϕ(𝐪^(t)),dd𝑡^𝐪𝑡absent^𝐙superscript𝐾^𝐐^𝐐𝛾𝐈1𝐾^𝐐^𝐪𝑡missing-subexpressionabsentsubscript^𝐙superscriptbold-italic-ϕsuperscript^𝐐𝖳𝐆bold-italic-ϕ^𝐐𝛾𝐈1bold-italic-ϕsuperscript^𝐐𝖳𝐆𝐂bold-italic-ϕ^𝐪𝑡\displaystyle\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)% &=\hat{\mathbf{Z}}\big{(}K(\hat{\mathbf{Q}},\hat{\mathbf{Q}})+\gamma\mathbf{I}% \big{)}^{-1}K(\hat{\mathbf{Q}},\hat{\mathbf{q}}(t))\\ &=\underbrace{\hat{\mathbf{Z}}\big{(}{\boldsymbol{\phi}}(\hat{\mathbf{Q}})^{% \mathsf{T}}\mathbf{G}{\boldsymbol{\phi}}(\hat{\mathbf{Q}})+\gamma\mathbf{I}% \big{)}^{-1}{\boldsymbol{\phi}}(\hat{\mathbf{Q}})^{\mathsf{T}}\mathbf{G}}_{% \mathbf{C}}{\boldsymbol{\phi}}(\hat{\mathbf{q}}(t)),\end{aligned}start_ROW start_CELL divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) end_CELL start_CELL = over^ start_ARG bold_Z end_ARG ( italic_K ( over^ start_ARG bold_Q end_ARG , over^ start_ARG bold_Q end_ARG ) + italic_γ bold_I ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_K ( over^ start_ARG bold_Q end_ARG , over^ start_ARG bold_q end_ARG ( italic_t ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = under⏟ start_ARG over^ start_ARG bold_Z end_ARG ( bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) + italic_γ bold_I ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_G end_ARG start_POSTSUBSCRIPT bold_C end_POSTSUBSCRIPT bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , end_CELL end_ROW (4.18)

whereas the OpInf ROM with the same training data and feature map is given by

ddt𝐪^(t)dd𝑡^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) =𝐙^ϕ(𝐐^)𝖳(ϕ(𝐐^)ϕ(𝐐^)𝖳+𝚪𝖳𝚪)1𝐎^ϕ(𝐪^(t)).absentsubscript^𝐙bold-italic-ϕsuperscript^𝐐𝖳superscriptbold-italic-ϕ^𝐐bold-italic-ϕsuperscript^𝐐𝖳superscript𝚪𝖳𝚪1^𝐎bold-italic-ϕ^𝐪𝑡\displaystyle=\underbrace{\hat{\mathbf{Z}}{\boldsymbol{\phi}}(\hat{\mathbf{Q}}% )^{\mathsf{T}}\big{(}{\boldsymbol{\phi}}(\hat{\mathbf{Q}}){\boldsymbol{\phi}}(% \hat{\mathbf{Q}})^{\mathsf{T}}+{\boldsymbol{\Gamma}}^{\mathsf{T}}{\boldsymbol{% \Gamma}}\big{)}^{-1}}_{\hat{\mathbf{O}}}{\boldsymbol{\phi}}(\hat{\mathbf{q}}(t% )).= under⏟ start_ARG over^ start_ARG bold_Z end_ARG bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) bold_italic_ϕ ( over^ start_ARG bold_Q end_ARG ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT + bold_Γ start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_Γ ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_POSTSUBSCRIPT over^ start_ARG bold_O end_ARG end_POSTSUBSCRIPT bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) . (4.19)

These models share the same nonlinear structure due to the final term ϕ(𝐪^(t))bold-italic-ϕ^𝐪𝑡{\boldsymbol{\phi}}(\hat{\mathbf{q}}(t))bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ( italic_t ) ), but the coefficients on the feature map differ: the Kernel ROM coefficient matrix 𝐂𝐂\mathbf{C}bold_C solves the M(nt+1)×M(nt+1)𝑀subscript𝑛𝑡1𝑀subscript𝑛𝑡1M(n_{t}+1)\times M(n_{t}+1)italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) × italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) linear system eq. 4.6b, while the solution 𝐎^^𝐎\hat{\mathbf{O}}over^ start_ARG bold_O end_ARG to the OpInf regression satisfies an nϕ×nϕsubscript𝑛italic-ϕsubscript𝑛italic-ϕn_{\phi}\times n_{\phi}italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT linear system eq. 4.16. Furthermore, OpInf is in general restricted to the feature map formulation eq. 4.14, though it has in some cases been augmented with additional nonlinear terms through, e.g., the discrete empirical interpolation method [8]; by contrast, Kernel ROMs can be designed to have general nonlinear (RBF) structure or hybrid structure such as in eq. 4.13, depending on the choice of kernel. Finally, establishing error bounds is an open problem for OpInf ROMs, whereas Kernel ROMs inherit properties from the underlying RKHS which lead to error estimates.

5 Error estimates

We now derive several a posteriori error estimates for Kernel ROMs that relate the FOM solution 𝐪(t)𝐪𝑡\mathbf{q}(t)bold_q ( italic_t ), the intrusive ROM solution 𝐪~(t)~𝐪𝑡\tilde{\mathbf{q}}(t)over~ start_ARG bold_q end_ARG ( italic_t ), and the Kernel ROM solution 𝐪^(t)^𝐪𝑡\hat{\mathbf{q}}(t)over^ start_ARG bold_q end_ARG ( italic_t ). These results require three main ingredients: the so-called local logarithmic Lipschitz constant, a Grönwall-type inequality, and standard error results for kernel interpolants. In this section, 𝐌nx×nx\mathbf{M}\in{}^{n_{x}\times n_{x}}bold_M ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT denotes a symmetric positive definite weighting matrix with Cholesky factorization 𝐌=𝐋𝐋𝖳𝐌superscript𝐋𝐋𝖳\mathbf{M}=\mathbf{L}\mathbf{L}^{\mathsf{T}}bold_M = bold_LL start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT. The 𝐌𝐌\mathbf{M}bold_M-weighted inner product and norm are denoted with 𝐱,𝐲𝐌𝐱𝖳𝐌𝐲=𝐋𝖳𝐱,𝐋𝖳𝐲subscript𝐱𝐲𝐌superscript𝐱𝖳𝐌𝐲superscript𝐋𝖳𝐱superscript𝐋𝖳𝐲\left\langle\mathbf{x},\mathbf{y}\right\rangle_{\mathbf{M}}\coloneqq\mathbf{x}% ^{\mathsf{T}}\mathbf{M}\mathbf{y}=\left\langle\mathbf{L}^{\mathsf{T}}\mathbf{x% },\mathbf{L}^{\mathsf{T}}\mathbf{y}\right\rangle⟨ bold_x , bold_y ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ≔ bold_x start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_My = ⟨ bold_L start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_x , bold_L start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_y ⟩ and 𝐱𝐌𝐱,𝐱𝐌1/2=𝐋𝖳𝐱2subscriptnorm𝐱𝐌superscriptsubscript𝐱𝐱𝐌12subscriptnormsuperscript𝐋𝖳𝐱2\left\|\mathbf{x}\right\|_{\mathbf{M}}\coloneqq\left\langle\mathbf{x},\mathbf{% x}\right\rangle_{\mathbf{M}}^{1/2}=\|\mathbf{L}^{\mathsf{T}}\mathbf{x}\|_{2}∥ bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ≔ ⟨ bold_x , bold_x ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT = ∥ bold_L start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_x ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, respectively.

5.1 Preliminaries

We begin with the definition of the local logarithmic Lipschitz constant. The reader is directed to, e.g., [57, 63] for a more complete overview.

Definition 5.1.

For a function 𝐛:nxnx\mathbf{b}:{}^{n_{x}}\to{}^{n_{x}}bold_b : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, the local logarithmic Lipschitz constant at 𝐱nx\mathbf{x}\in{}^{n_{x}}bold_x ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT with respect to 𝐌𝐌\mathbf{M}bold_M is defined as

Λ𝐌[𝐛](𝐱)sup𝐳d𝐳𝐱,𝐛(𝐳)𝐛(𝐱)𝐌𝐳𝐱𝐌2.\displaystyle\Lambda_{\mathbf{M}}[\mathbf{b}](\mathbf{x})\coloneqq\sup_{% \mathbf{z}\in{}^{d}}\frac{\left\langle\mathbf{z}-\mathbf{x},\mathbf{b}(\mathbf% {z})-\mathbf{b}(\mathbf{x})\right\rangle_{\mathbf{M}}}{\left\|\mathbf{z}-% \mathbf{x}\right\|_{\mathbf{M}}^{2}}.roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_b ] ( bold_x ) ≔ roman_sup start_POSTSUBSCRIPT bold_z ∈ start_FLOATSUPERSCRIPT italic_d end_FLOATSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG ⟨ bold_z - bold_x , bold_b ( bold_z ) - bold_b ( bold_x ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_z - bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (5.1)

The local logarithmic Lipschitz constant can be seen as a nonlinear generalization of the logarithmic norm of a matrix.

Definition 5.2 (Logarithmic norm).

The logarithmic norm of a matrix 𝐁nx×nx\mathbf{B}\in{}^{n_{x}\times n_{x}}bold_B ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT with respect to 𝐌𝐌\mathbf{M}bold_M is defined as

λ𝐌(𝐁)sup𝐱nx𝐱,𝐁𝐱𝐌𝐱𝐌2=maxσ(12(𝐁~+𝐁~𝖳)),\displaystyle\lambda_{\mathbf{M}}(\mathbf{B})\coloneqq\sup_{\mathbf{x}\in{}^{n% _{x}}}\frac{\left\langle\mathbf{x},\mathbf{B}\mathbf{x}\right\rangle_{\mathbf{% M}}}{\left\|\mathbf{x}\right\|_{\mathbf{M}}^{2}}=\max\sigma\left(\frac{1}{2}% \left(\tilde{\mathbf{B}}+\tilde{\mathbf{B}}^{\mathsf{T}}\right)\right),italic_λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( bold_B ) ≔ roman_sup start_POSTSUBSCRIPT bold_x ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG ⟨ bold_x , bold_Bx ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = roman_max italic_σ ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( over~ start_ARG bold_B end_ARG + over~ start_ARG bold_B end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) ) , (5.2)

where σ(12(𝐁~+𝐁~𝖳))𝜎12~𝐁superscript~𝐁𝖳\sigma(\frac{1}{2}(\tilde{\mathbf{B}}+\tilde{\mathbf{B}}^{\mathsf{T}}))italic_σ ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( over~ start_ARG bold_B end_ARG + over~ start_ARG bold_B end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) ) is the spectrum of 12(𝐁~+𝐁~𝖳)12~𝐁superscript~𝐁𝖳\frac{1}{2}(\tilde{\mathbf{B}}+\tilde{\mathbf{B}}^{\mathsf{T}})divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( over~ start_ARG bold_B end_ARG + over~ start_ARG bold_B end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) and 𝐁~=𝐋𝖳𝐁𝐋𝖳.~𝐁superscript𝐋𝖳superscript𝐁𝐋𝖳\tilde{\mathbf{B}}=\mathbf{L}^{\mathsf{T}}\mathbf{B}\mathbf{L}^{-\mathsf{T}}.over~ start_ARG bold_B end_ARG = bold_L start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_BL start_POSTSUPERSCRIPT - sansserif_T end_POSTSUPERSCRIPT .

If 𝐛𝐛\mathbf{b}bold_b is an affine function, i.e., 𝐛(𝐱)=𝐁𝐱+𝐝𝐛𝐱𝐁𝐱𝐝\mathbf{b}(\mathbf{x})=\mathbf{B}\mathbf{x}+\mathbf{d}bold_b ( bold_x ) = bold_Bx + bold_d for some 𝐁nx×nx\mathbf{B}\in{}^{n_{x}\times n_{x}}bold_B ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐝nx\mathbf{d}\in{}^{n_{x}}bold_d ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, then Λ𝐌[𝐛](𝐱)=λ𝐌(𝐁)subscriptΛ𝐌delimited-[]𝐛𝐱subscript𝜆𝐌𝐁\Lambda_{\mathbf{M}}[\mathbf{b}](\mathbf{x})=\lambda_{\mathbf{M}}(\mathbf{B})roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_b ] ( bold_x ) = italic_λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( bold_B ). Note that the local logarithmic Lipschitz constant and the logarithmic norm can be negative, unlike a standard Lipschitz constant. We also note that if 𝐛𝐛\mathbf{b}bold_b is differentiable, then Λ𝐌[𝐛](𝐱)subscriptΛ𝐌delimited-[]𝐛𝐱\Lambda_{\mathbf{M}}[\mathbf{b}](\mathbf{x})roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_b ] ( bold_x ) can be approximated by the logarithmic norm of the Jacobian 𝐛(𝐱)superscript𝐛𝐱\mathbf{b}^{\prime}(\mathbf{x})bold_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_x ):

𝐳𝐱,𝐛(𝐳)𝐛(𝐱)𝐌𝐳𝐱𝐌2subscript𝐳𝐱𝐛𝐳𝐛𝐱𝐌superscriptsubscriptnorm𝐳𝐱𝐌2\displaystyle\frac{\left\langle\mathbf{z}-\mathbf{x},\mathbf{b}(\mathbf{z})-% \mathbf{b}(\mathbf{x})\right\rangle_{\mathbf{M}}}{\left\|\mathbf{z}-\mathbf{x}% \right\|_{\mathbf{M}}^{2}}divide start_ARG ⟨ bold_z - bold_x , bold_b ( bold_z ) - bold_b ( bold_x ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_z - bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG =𝐳𝐱,𝐛(𝐱)(𝐳𝐱)𝐌𝐳𝐱𝐌2+𝒪(𝐳𝐱𝐌)𝐳𝐱,𝐛(𝐱)(𝐳𝐱)𝐌𝐳𝐱𝐌2λ𝐌(𝐛(𝐱)).absentsubscript𝐳𝐱superscript𝐛𝐱𝐳𝐱𝐌superscriptsubscriptnorm𝐳𝐱𝐌2𝒪subscriptnorm𝐳𝐱𝐌subscript𝐳𝐱superscript𝐛𝐱𝐳𝐱𝐌superscriptsubscriptnorm𝐳𝐱𝐌2subscript𝜆𝐌superscript𝐛𝐱\displaystyle=\frac{\left\langle\mathbf{z}-\mathbf{x},\mathbf{b}^{\prime}(% \mathbf{x})(\mathbf{z}-\mathbf{x})\right\rangle_{\mathbf{M}}}{\left\|\mathbf{z% }-\mathbf{x}\right\|_{\mathbf{M}}^{2}}+\mathcal{O}(\left\|\mathbf{z}-\mathbf{x% }\right\|_{\mathbf{M}})\approx\frac{\left\langle\mathbf{z}-\mathbf{x},\mathbf{% b}^{\prime}(\mathbf{x})(\mathbf{z}-\mathbf{x})\right\rangle_{\mathbf{M}}}{% \left\|\mathbf{z}-\mathbf{x}\right\|_{\mathbf{M}}^{2}}\leq\lambda_{\mathbf{M}}% (\mathbf{b}^{\prime}(\mathbf{x})).= divide start_ARG ⟨ bold_z - bold_x , bold_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_x ) ( bold_z - bold_x ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_z - bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + caligraphic_O ( ∥ bold_z - bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ) ≈ divide start_ARG ⟨ bold_z - bold_x , bold_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_x ) ( bold_z - bold_x ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_z - bold_x ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≤ italic_λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( bold_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_x ) ) .

We also need the following Grönwall-type inequality.

Lemma 5.1 (Grönwall inequality).

Let T>0𝑇0T>0italic_T > 0 and α,β:[0,T]:𝛼𝛽0𝑇absent\alpha,\beta:[0,T]\to\realitalic_α , italic_β : [ 0 , italic_T ] → be integrable functions. If u:[0,T]:𝑢0𝑇absentu:[0,T]\to\realitalic_u : [ 0 , italic_T ] → is differentiable and satisfies u(t)β(t)u(t)+α(t)superscript𝑢𝑡𝛽𝑡𝑢𝑡𝛼𝑡u^{\prime}(t)\leq\beta(t)u(t)+\alpha(t)italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t ) ≤ italic_β ( italic_t ) italic_u ( italic_t ) + italic_α ( italic_t ) for all t(0,T)𝑡0𝑇t\in(0,T)italic_t ∈ ( 0 , italic_T ), then

u(t)0tα(s)estβ(τ)𝑑τ𝑑s+e0tβ(τ)𝑑τu(0)𝑢𝑡superscriptsubscript0𝑡𝛼𝑠superscript𝑒superscriptsubscript𝑠𝑡𝛽𝜏differential-d𝜏differential-d𝑠superscript𝑒superscriptsubscript0𝑡𝛽𝜏differential-d𝜏𝑢0\displaystyle u(t)\leq\int_{0}^{t}\alpha(s)e^{\int_{s}^{t}\beta(\tau)d\tau}ds+% e^{\int_{0}^{t}\beta(\tau)d\tau}u(0)italic_u ( italic_t ) ≤ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_α ( italic_s ) italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β ( italic_τ ) italic_d italic_τ end_POSTSUPERSCRIPT italic_d italic_s + italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β ( italic_τ ) italic_d italic_τ end_POSTSUPERSCRIPT italic_u ( 0 )

for any 0tT0𝑡𝑇0\leq t\leq T0 ≤ italic_t ≤ italic_T.

See, e.g., [63, Lemma 2.6] for a proof.

5.2 Error bounds

We now present an a posteriori error analysis for Kernel ROMs, which follows the approach detailed in [63]. The strategy is to view the Kernel ROM function 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG as a regularized kernel interpolant of the intrusive projection-based ROM function 𝐟~~𝐟\tilde{\mathbf{f}}over~ start_ARG bold_f end_ARG, plus a discrepancy term 𝜹𝜹{\boldsymbol{\delta}}bold_italic_δ that accounts for the approximation error between 𝐟~(𝐪^k())~𝐟superscriptsubscript^𝐪𝑘\tilde{\mathbf{f}}(\hat{\mathbf{q}}_{k}^{(\ell)})over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT ) and the time derivative estimates 𝐪^˙k()superscriptsubscript˙^𝐪𝑘\dot{\hat{\mathbf{q}}}_{k}^{(\ell)}over˙ start_ARG over^ start_ARG bold_q end_ARG end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT used to train the interpolant.

First, define the Kernel ROM reconstruction error

𝐞(t)𝐪(t)𝐠(𝐪^(t)),𝐞𝑡𝐪𝑡𝐠^𝐪𝑡\displaystyle\mathbf{e}(t)\coloneqq\mathbf{q}(t)-\mathbf{g}(\hat{\mathbf{q}}(t% )),bold_e ( italic_t ) ≔ bold_q ( italic_t ) - bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , (5.3)

where 𝐪(t)𝐪𝑡\mathbf{q}(t)bold_q ( italic_t ) is the solution to the FOM eq. 3.1, 𝐪^(t)^𝐪𝑡\hat{\mathbf{q}}(t)over^ start_ARG bold_q end_ARG ( italic_t ) is the solution to the Kernel ROM eq. 4.1, and 𝐠𝐠\mathbf{g}bold_g is the decompression map eq. 3.5. The reconstruction error evolves according to the system

ddt𝐞(t)=𝐟(𝐪(t))𝐠(𝐪^(t))𝐟^(𝐪^(t)),𝐞(0)=𝐪0𝐠(𝐕𝖳(𝐪0𝐪¯)),formulae-sequencedd𝑡𝐞𝑡𝐟𝐪𝑡superscript𝐠^𝐪𝑡^𝐟^𝐪𝑡𝐞0subscript𝐪0𝐠superscript𝐕𝖳subscript𝐪0¯𝐪\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{e}(t)=\mathbf{f}(\mathbf{q}% (t))-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\hat{\mathbf{f}}(\hat{\mathbf{q}}% (t)),\qquad\mathbf{e}(0)=\mathbf{q}_{0}-\mathbf{g}(\mathbf{V}^{\mathsf{T}}(% \mathbf{q}_{0}-\bar{\mathbf{q}})),divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_e ( italic_t ) = bold_f ( bold_q ( italic_t ) ) - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , bold_e ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - bold_g ( bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - over¯ start_ARG bold_q end_ARG ) ) , (5.4)

where 𝐠(𝐪^)=𝐕+𝐖[𝐈𝐪^+𝐪^𝐈]nq×r\mathbf{g}^{\prime}(\hat{\mathbf{q}})=\mathbf{V}+\mathbf{W}[\mathbf{I}\otimes% \hat{\mathbf{q}}+\hat{\mathbf{q}}\otimes\mathbf{I}]\in{}^{n_{q}\times r}bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ) = bold_V + bold_W [ bold_I ⊗ over^ start_ARG bold_q end_ARG + over^ start_ARG bold_q end_ARG ⊗ bold_I ] ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_r end_FLOATSUPERSCRIPT is the Jacobian of 𝐠𝐠\mathbf{g}bold_g. Although we use a QM to define the reconstruction mapping 𝐠𝐠\mathbf{g}bold_g, the following error analysis holds for any reconstruction mapping of the same structure, namely with 𝐠𝐠\mathbf{g}bold_g taken to be the sum of an affine part and a nonlinear part.

Theorem 5.1 (A posteriori error).

If 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG is an unregularized kernel interpolant of 𝐟~+𝛅Kr~𝐟𝛅superscriptsubscript𝐾𝑟\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\in{\cal H}_{K}^{r}over~ start_ARG bold_f end_ARG + bold_italic_δ ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT where 𝛅(𝐪^(s))𝐌<δ(s)subscriptnorm𝛅^𝐪𝑠𝐌𝛿𝑠\left\|{\boldsymbol{\delta}}(\hat{\mathbf{q}}(s))\right\|_{\mathbf{M}}<\delta(s)∥ bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT < italic_δ ( italic_s ), then

𝐞(t)𝐌subscriptnorm𝐞𝑡𝐌\displaystyle\left\|\mathbf{e}(t)\right\|_{\mathbf{M}}∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT 0t(αP(s)+αK(s))estβ(τ)𝑑τ𝑑s+e0tβ(τ)𝑑τ𝐞N(0)𝐌,absentsuperscriptsubscript0𝑡subscript𝛼𝑃𝑠subscript𝛼𝐾𝑠superscript𝑒superscriptsubscript𝑠𝑡𝛽𝜏differential-d𝜏differential-d𝑠superscript𝑒superscriptsubscript0𝑡𝛽𝜏differential-d𝜏subscriptnormsubscript𝐞𝑁0𝐌\displaystyle\leq\int_{0}^{t}(\alpha_{P}(s)+\alpha_{K}(s))e^{\int_{s}^{t}\beta% (\tau)d\tau}ds+e^{\int_{0}^{t}\beta(\tau)d\tau}\left\|\mathbf{e}_{N}(0)\right% \|_{\mathbf{M}},≤ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ( italic_s ) + italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_s ) ) italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β ( italic_τ ) italic_d italic_τ end_POSTSUPERSCRIPT italic_d italic_s + italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_β ( italic_τ ) italic_d italic_τ end_POSTSUPERSCRIPT ∥ bold_e start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( 0 ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT , for-all\displaystyle\forall t[0,T],𝑡0𝑇\displaystyle\;t\in[0,T],italic_t ∈ [ 0 , italic_T ] , (5.5)

where

αP(s)subscript𝛼𝑃𝑠\displaystyle\alpha_{P}(s)italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ( italic_s ) =(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(s)))𝐌,absentsubscriptnorm𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑠𝐌\displaystyle=\left\|(\mathbf{I}-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))% \mathbf{V}^{\mathsf{T}})\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(s)))\right\|_{% \mathbf{M}},= ∥ ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT , (5.6a)
αK(s)subscript𝛼𝐾𝑠\displaystyle\alpha_{K}(s)italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ( italic_s ) =𝐠(𝐪^(s))𝐌(PK,𝐐~(𝐪^(s))𝐋2𝐟~+𝜹Kr+δ(s)),andabsentsubscriptnormsuperscript𝐠^𝐪𝑠𝐌subscript𝑃𝐾~𝐐^𝐪𝑠subscriptnorm𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟𝛿𝑠and\displaystyle=\left\|\mathbf{g}^{\prime}(\hat{\mathbf{q}}(s))\right\|_{\mathbf% {M}}\left(P_{K,\tilde{\mathbf{Q}}}(\hat{\mathbf{q}}(s))\left\|\mathbf{L}\right% \|_{2}\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}+\delta(s% )\right),\quad\text{and}= ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( italic_P start_POSTSUBSCRIPT italic_K , over~ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT + italic_δ ( italic_s ) ) , and (5.6b)
β(s)𝛽𝑠\displaystyle\beta(s)italic_β ( italic_s ) =Λ𝐌[𝐟](𝐠(𝐪^(s))).absentsubscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑠\displaystyle=\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(s))).= roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ) . (5.6c)
Proof.

Notice that the evolution equations in eq. 5.4 can be rewritten as

ddt𝐞(t)dd𝑡𝐞𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{e}(t)divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_e ( italic_t ) =𝐟(𝐪(t))𝐠(𝐪^(t))𝐟^(𝐪^(t))𝐟(𝐠(𝐪^(t)))+𝐟(𝐠(𝐪^(t)))absent𝐟𝐪𝑡superscript𝐠^𝐪𝑡^𝐟^𝐪𝑡𝐟𝐠^𝐪𝑡𝐟𝐠^𝐪𝑡\displaystyle=\mathbf{f}(\mathbf{q}(t))-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t% ))\hat{\mathbf{f}}(\hat{\mathbf{q}}(t))-\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}% (t)))+\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(t)))= bold_f ( bold_q ( italic_t ) ) - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) + bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) )
𝐠(𝐪^(t))𝐕𝖳𝐟(𝐠(𝐪^(t)))+𝐠(𝐪^(t))𝐕𝖳𝐟(𝐠(𝐪^(t)))𝐠(𝐪^(t))𝜹(𝐪^(t))+𝐠(𝐪^(t))𝜹(𝐪^(t))superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡superscript𝐠^𝐪𝑡𝜹^𝐪𝑡superscript𝐠^𝐪𝑡𝜹^𝐪𝑡\displaystyle\quad-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf% {T}}\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(t)))+\mathbf{g}^{\prime}(\hat{% \mathbf{q}}(t))\mathbf{V}^{\mathsf{T}}\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(t% )))-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t)){\boldsymbol{\delta}}(\hat{\mathbf% {q}}(t))+\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t)){\boldsymbol{\delta}}(\hat{% \mathbf{q}}(t))- bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) + bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) )
=𝐟(𝐪(t))𝐟(𝐠(𝐪^(t)))+(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(t)))absent𝐟𝐪𝑡𝐟𝐠^𝐪𝑡𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡\displaystyle=\mathbf{f}(\mathbf{q}(t))-\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}% (t)))+(\mathbf{I}-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf{% T}})\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(t)))= bold_f ( bold_q ( italic_t ) ) - bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) + ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) )
+𝐠(𝐪^(t))(𝐕𝖳𝐟(𝐠(𝐪^))+𝜹(𝐪^(t))𝐟^(𝐪^(t)))𝐠(𝐪^(t))𝜹(𝐪^(t)).superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝜹^𝐪𝑡^𝐟^𝐪𝑡superscript𝐠^𝐪𝑡𝜹^𝐪𝑡\displaystyle\quad+\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\left(\mathbf{V}^{% \mathsf{T}}\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}))+{\boldsymbol{\delta}}(\hat% {\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{\mathbf{q}}(t))\right)-\mathbf{g}^{% \prime}(\hat{\mathbf{q}}(t)){\boldsymbol{\delta}}(\hat{\mathbf{q}}(t)).+ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ( bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ) ) + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) .

Taking the 𝐌𝐌\mathbf{M}bold_M-weighted inner product with 𝐞(t)𝐞𝑡\mathbf{e}(t)bold_e ( italic_t ) and using the definition of the logarithmic Lipschitz constant and Corollary 2.2 yields

𝐞(t),ddt𝐞(t)𝐌subscript𝐞𝑡dd𝑡𝐞𝑡𝐌\displaystyle\left\langle\mathbf{e}(t),\frac{\textrm{d}}{\textrm{d}t}\mathbf{e% }(t)\right\rangle_{\mathbf{M}}⟨ bold_e ( italic_t ) , divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_e ( italic_t ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
=𝐞(t),𝐟(𝐪(t))𝐟(𝐠(𝐪^(t)))𝐌+𝐞(t),(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(t)))𝐌absentsubscript𝐞𝑡𝐟𝐪𝑡𝐟𝐠^𝐪𝑡𝐌subscript𝐞𝑡𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡𝐌\displaystyle=\left\langle\mathbf{e}(t),\mathbf{f}(\mathbf{q}(t))-\mathbf{f}(% \mathbf{g}(\hat{\mathbf{q}}(t)))\right\rangle_{\mathbf{M}}+\left\langle\mathbf% {e}(t),(\mathbf{I}-\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf% {T}})\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}(t)))\right\rangle_{\mathbf{M}}= ⟨ bold_e ( italic_t ) , bold_f ( bold_q ( italic_t ) ) - bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT + ⟨ bold_e ( italic_t ) , ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
+𝐞(t),𝐠(𝐪^(t))(𝐕𝖳𝐟(𝐠(𝐪^))+𝜹(𝐪^(t))𝐟^(𝐪^(t)))𝐌𝐞(t),𝐠(𝐪^(t))𝜹(𝐪^(t))𝐌subscript𝐞𝑡superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝜹^𝐪𝑡^𝐟^𝐪𝑡𝐌subscript𝐞𝑡superscript𝐠^𝐪𝑡𝜹^𝐪𝑡𝐌\displaystyle\quad+\left\langle\mathbf{e}(t),\mathbf{g}^{\prime}(\hat{\mathbf{% q}}(t))\left(\mathbf{V}^{\mathsf{T}}\mathbf{f}(\mathbf{g}(\hat{\mathbf{q}}))+{% \boldsymbol{\delta}}(\hat{\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{\mathbf{q}}(t)% )\right)\right\rangle_{\mathbf{M}}-\left\langle\mathbf{e}(t),\mathbf{g}^{% \prime}(\hat{\mathbf{q}}(t)){\boldsymbol{\delta}}(\hat{\mathbf{q}}(t))\right% \rangle_{\mathbf{M}}+ ⟨ bold_e ( italic_t ) , bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ( bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ) ) + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT - ⟨ bold_e ( italic_t ) , bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
Λ𝐌[𝐟](𝐠(𝐪^(t)))𝐞(t)𝐌2+(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(t)))𝐌𝐞(t)𝐌absentsubscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑡superscriptsubscriptnorm𝐞𝑡𝐌2subscriptnorm𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡𝐌subscriptnorm𝐞𝑡𝐌\displaystyle\leq\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(% t)))\left\|\mathbf{e}(t)\right\|_{\mathbf{M}}^{2}+\left\|(\mathbf{I}-\mathbf{g% }^{\prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf{T}})\mathbf{f}(\mathbf{g}(% \hat{\mathbf{q}}(t)))\right\|_{\mathbf{M}}\left\|\mathbf{e}(t)\right\|_{% \mathbf{M}}≤ roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
+𝐠(𝐪^(t))𝐌𝐕𝖳𝐟(𝐠(𝐪^(t)))𝐟~(𝐪^(t))+𝜹(𝐪^(t))𝐟^(𝐪^(t))𝐌𝐞(t)𝐌+𝐠(𝐪^(t))𝐌𝜹(𝐪^(t))𝐌δ(t)𝐞(t)𝐌subscriptnormsuperscript𝐠^𝐪𝑡𝐌subscriptnormsubscriptsuperscript𝐕𝖳𝐟𝐠^𝐪𝑡~𝐟^𝐪𝑡𝜹^𝐪𝑡^𝐟^𝐪𝑡𝐌subscriptnorm𝐞𝑡𝐌subscriptnormsuperscript𝐠^𝐪𝑡𝐌subscriptsubscriptnorm𝜹^𝐪𝑡𝐌absent𝛿𝑡subscriptnorm𝐞𝑡𝐌\displaystyle\quad+\left\|\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\right\|_{% \mathbf{M}}\|\underbrace{\mathbf{V}^{\mathsf{T}}\mathbf{f}(\mathbf{g}(\hat{% \mathbf{q}}(t)))}_{\tilde{\mathbf{f}}(\hat{\mathbf{q}}(t))}+{\boldsymbol{% \delta}}(\hat{\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{\mathbf{q}}(t))\|_{\mathbf% {M}}\left\|\mathbf{e}(t)\right\|_{\mathbf{M}}+\left\|\mathbf{g}^{\prime}(\hat{% \mathbf{q}}(t))\right\|_{\mathbf{M}}\underbrace{\left\|{\boldsymbol{\delta}}(% \hat{\mathbf{q}}(t))\right\|_{\mathbf{M}}}_{\leq\delta(t)}\left\|\mathbf{e}(t)% \right\|_{\mathbf{M}}+ ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ∥ under⏟ start_ARG bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) end_ARG start_POSTSUBSCRIPT over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) end_POSTSUBSCRIPT + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT + ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT under⏟ start_ARG ∥ bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_POSTSUBSCRIPT ≤ italic_δ ( italic_t ) end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
Λ𝐌[𝐟](𝐠(𝐪^(t)))𝐞(t)𝐌2+(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(t)))𝐌𝐞(t)𝐌absentsubscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑡superscriptsubscriptnorm𝐞𝑡𝐌2subscriptnorm𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡𝐌subscriptnorm𝐞𝑡𝐌\displaystyle\leq\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(% t)))\left\|\mathbf{e}(t)\right\|_{\mathbf{M}}^{2}+\left\|(\mathbf{I}-\mathbf{g% }^{\prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf{T}})\mathbf{f}(\mathbf{g}(% \hat{\mathbf{q}}(t)))\right\|_{\mathbf{M}}\left\|\mathbf{e}(t)\right\|_{% \mathbf{M}}≤ roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
+𝐠(𝐪^(t))𝐌PK,𝐐~(𝐪^(t))𝐋2𝐟~+𝜹Kr𝐞(t)𝐌+δ(t)𝐠(𝐪^(t))𝐌𝐞(t)𝐌.subscriptnormsuperscript𝐠^𝐪𝑡𝐌subscript𝑃𝐾~𝐐^𝐪𝑡subscriptnorm𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟subscriptnorm𝐞𝑡𝐌𝛿𝑡subscriptnormsuperscript𝐠^𝐪𝑡𝐌subscriptnorm𝐞𝑡𝐌\displaystyle\quad+\left\|\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\right\|_{% \mathbf{M}}P_{K,\tilde{\mathbf{Q}}}(\hat{\mathbf{q}}(t))\left\|\mathbf{L}% \right\|_{2}\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}% \left\|\mathbf{e}(t)\right\|_{\mathbf{M}}+\delta(t)\left\|\mathbf{g}^{\prime}(% \hat{\mathbf{q}}(t))\right\|_{\mathbf{M}}\left\|\mathbf{e}(t)\right\|_{\mathbf% {M}}.+ ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_K , over~ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT + italic_δ ( italic_t ) ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT .

Therefore,

ddt𝐞(t)𝐌=𝐞(t),ddt𝐞(t)𝐌𝐞(t)𝐌dd𝑡subscriptnorm𝐞𝑡𝐌subscript𝐞𝑡dd𝑡𝐞𝑡𝐌subscriptnorm𝐞𝑡𝐌\displaystyle\frac{\textrm{d}}{\textrm{d}t}\left\|\mathbf{e}(t)\right\|_{% \mathbf{M}}=\frac{\left\langle\mathbf{e}(t),\frac{\textrm{d}}{\textrm{d}t}% \mathbf{e}(t)\right\rangle_{\mathbf{M}}}{\left\|\mathbf{e}(t)\right\|_{\mathbf% {M}}}divide start_ARG d end_ARG start_ARG d italic_t end_ARG ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT = divide start_ARG ⟨ bold_e ( italic_t ) , divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_e ( italic_t ) ⟩ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG start_ARG ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT end_ARG Λ𝐌[𝐟](𝐠(𝐪^(t)))𝐞(t)𝐌+(𝐈𝐠(𝐪^(t))𝐕𝖳)𝐟(𝐠(𝐪^(t)))𝐌absentsubscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑡subscriptnorm𝐞𝑡𝐌subscriptnorm𝐈superscript𝐠^𝐪𝑡superscript𝐕𝖳𝐟𝐠^𝐪𝑡𝐌\displaystyle\leq\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(% t)))\left\|\mathbf{e}(t)\right\|_{\mathbf{M}}+\left\|(\mathbf{I}-\mathbf{g}^{% \prime}(\hat{\mathbf{q}}(t))\mathbf{V}^{\mathsf{T}})\mathbf{f}(\mathbf{g}(\hat% {\mathbf{q}}(t)))\right\|_{\mathbf{M}}≤ roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ bold_e ( italic_t ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT + ∥ ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT
+𝐠(𝐪^(t))𝐌(PK,𝐐^(𝐪^(t))𝐋2𝐟~+𝜹Kr+δ(t)).subscriptnormsuperscript𝐠^𝐪𝑡𝐌subscript𝑃𝐾^𝐐^𝐪𝑡subscriptnorm𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟𝛿𝑡\displaystyle\quad+\left\|\mathbf{g}^{\prime}(\hat{\mathbf{q}}(t))\right\|_{% \mathbf{M}}\left(P_{K,\hat{\mathbf{Q}}}(\hat{\mathbf{q}}(t))\left\|\mathbf{L}% \right\|_{2}\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}+% \delta(t)\right).+ ∥ bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( italic_P start_POSTSUBSCRIPT italic_K , over^ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ bold_L ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT + italic_δ ( italic_t ) ) .

Applying Lemma 5.1 yields the result. ∎

A caveat to the result in Theorem 5.1 is that it relies on Corollary 2.2, which requires zero regularization. However, as we demonstrate empirically in Section 6, the error bound eq. 5.5 still holds when the regularization hyperparameter γ𝛾\gammaitalic_γ is small. Secondly, computing the local logarithmic Lipschitz constant λ𝐌[𝐟]subscript𝜆𝐌delimited-[]𝐟\lambda_{\mathbf{M}}[\mathbf{f}]italic_λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] is difficult to do in general. In practice, we instead approximate it using the logarithmic norm of 𝐟(𝐠(𝐪^(t)))superscript𝐟𝐠^𝐪𝑡\mathbf{f}^{\prime}(\mathbf{g}(\hat{\mathbf{q}}(t)))bold_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ). Lastly, we note that the estimate eq. 5.5 requires evaluating the FOM right-hand side 𝐟𝐟\mathbf{f}bold_f, and therefore is a code-intrusive error bound. We leave the non-intrusive estimation of the bound eq. 5.5 to future work.

We also obtain the following a posteriori error result for intrusive projection-based ROMs by examining the special case 𝐟^=𝐟~^𝐟~𝐟\hat{\mathbf{f}}=\tilde{\mathbf{f}}over^ start_ARG bold_f end_ARG = over~ start_ARG bold_f end_ARG.

Corollary 5.1.

The following error estimate holds for all t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ]:

𝐪(t)𝐠(𝐪~(t))𝐌subscriptnorm𝐪𝑡𝐠~𝐪𝑡𝐌\displaystyle\left\|\mathbf{q}(t)-\mathbf{g}(\tilde{\mathbf{q}}(t))\right\|_{% \mathbf{M}}∥ bold_q ( italic_t ) - bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT 0t(𝐈𝐠(𝐪~(s))𝐕𝖳)𝐟(𝐠(𝐪~(s)))𝐌estΛ𝐌[𝐟](𝐠(𝐪^I(τ)))𝑑τ𝑑sabsentsuperscriptsubscript0𝑡subscriptnorm𝐈superscript𝐠~𝐪𝑠superscript𝐕𝖳𝐟𝐠~𝐪𝑠𝐌superscript𝑒superscriptsubscript𝑠𝑡subscriptΛ𝐌delimited-[]𝐟𝐠subscript^𝐪𝐼𝜏differential-d𝜏differential-d𝑠\displaystyle\leq\int_{0}^{t}\left\|(\mathbf{I}-\mathbf{g}^{\prime}(\tilde{% \mathbf{q}}(s))\mathbf{V}^{\mathsf{T}})\mathbf{f}(\mathbf{g}(\tilde{\mathbf{q}% }(s)))\right\|_{\mathbf{M}}e^{\int_{s}^{t}\Lambda_{\mathbf{M}}[\mathbf{f}](% \mathbf{g}(\hat{\mathbf{q}}_{I}(\tau)))d\tau}ds≤ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∥ ( bold_I - bold_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( over~ start_ARG bold_q end_ARG ( italic_s ) ) bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) bold_f ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_s ) ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ( italic_τ ) ) ) italic_d italic_τ end_POSTSUPERSCRIPT italic_d italic_s (5.7)
+e0tΛ𝐌[𝐟](𝐠(𝐪~(τ)))𝑑τ𝐪(0)𝐠(𝐪^(0))𝐌.superscript𝑒superscriptsubscript0𝑡subscriptΛ𝐌delimited-[]𝐟𝐠~𝐪𝜏differential-d𝜏subscriptnorm𝐪0𝐠^𝐪0𝐌\displaystyle\quad+e^{\int_{0}^{t}\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(% \tilde{\mathbf{q}}(\tau)))d\tau}\left\|\mathbf{q}(0)-\mathbf{g}(\hat{\mathbf{q% }}(0))\right\|_{\mathbf{M}}.+ italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_τ ) ) ) italic_d italic_τ end_POSTSUPERSCRIPT ∥ bold_q ( 0 ) - bold_g ( over^ start_ARG bold_q end_ARG ( 0 ) ) ∥ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT .

We conclude with an error result comparing the intrusive projection-based ROM solution 𝐪~(t)~𝐪𝑡\tilde{\mathbf{q}}(t)over~ start_ARG bold_q end_ARG ( italic_t ) and the Kernel ROM solution 𝐪^(t)^𝐪𝑡\hat{\mathbf{q}}(t)over^ start_ARG bold_q end_ARG ( italic_t ). Let 𝐞^(t)=𝐪~(t)𝐪^(t)^𝐞𝑡~𝐪𝑡^𝐪𝑡\hat{\mathbf{e}}(t)=\tilde{\mathbf{q}}(t)-\hat{\mathbf{q}}(t)over^ start_ARG bold_e end_ARG ( italic_t ) = over~ start_ARG bold_q end_ARG ( italic_t ) - over^ start_ARG bold_q end_ARG ( italic_t ), which satisfies the ODE

ddt𝐞^(t)=𝐟~(𝐪~(t))𝐟^(𝐪^(t)),𝐞^(0)=𝟎.formulae-sequencedd𝑡^𝐞𝑡~𝐟~𝐪𝑡^𝐟^𝐪𝑡^𝐞00\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{e}}(t)=\tilde{\mathbf{% f}}(\tilde{\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{\mathbf{q}}(t)),\qquad\hat{% \mathbf{e}}(0)=\mathbf{0}.divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_e end_ARG ( italic_t ) = over~ start_ARG bold_f end_ARG ( over~ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) , over^ start_ARG bold_e end_ARG ( 0 ) = bold_0 . (5.8)

We then have the following.

Proposition 5.1.

Let 𝐌^r×r\hat{\mathbf{M}}\in{}^{r\times r}over^ start_ARG bold_M end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT be a symmetric positive definite weighting matrix with Cholesky factorization 𝐌^=𝐋^𝐋^𝖳^𝐌^𝐋superscript^𝐋𝖳\hat{\mathbf{M}}=\hat{\mathbf{L}}\hat{\mathbf{L}}^{\mathsf{T}}over^ start_ARG bold_M end_ARG = over^ start_ARG bold_L end_ARG over^ start_ARG bold_L end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT. If 𝐟^^𝐟\hat{\mathbf{f}}over^ start_ARG bold_f end_ARG is an unregularized kernel interpolant of 𝐟~+𝛅Kr~𝐟𝛅superscriptsubscript𝐾𝑟\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\in{\cal H}_{K}^{r}over~ start_ARG bold_f end_ARG + bold_italic_δ ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT where 𝛅(𝐪^(s))𝐌^<δ(s)subscriptnorm𝛅^𝐪𝑠^𝐌𝛿𝑠\left\|{\boldsymbol{\delta}}(\hat{\mathbf{q}}(s))\right\|_{\hat{\mathbf{M}}}<% \delta(s)∥ bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT < italic_δ ( italic_s ), then

𝐞^(t)𝐌^subscriptnorm^𝐞𝑡^𝐌\displaystyle\left\|\hat{\mathbf{e}}(t)\right\|_{\hat{\mathbf{M}}}∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT 0t(PK,𝐐~(𝐪^(s))𝐋^2𝐟~+𝜹Kr+δ(s))es𝖳Λ𝐌^[𝐟^](𝐪^(τ))𝑑τ𝑑s,absentsuperscriptsubscript0𝑡subscript𝑃𝐾~𝐐^𝐪𝑠subscriptnorm^𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟𝛿𝑠superscript𝑒superscriptsubscript𝑠𝖳subscriptΛ^𝐌delimited-[]^𝐟^𝐪𝜏differential-d𝜏differential-d𝑠\displaystyle\leq\int_{0}^{t}\left(P_{K,\tilde{\mathbf{Q}}}(\hat{\mathbf{q}}(s% ))\|\hat{\mathbf{L}}\|_{2}\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H% }_{K}^{r}}+\delta(s)\right)e^{\int_{s}^{\mathsf{T}}\Lambda_{\hat{\mathbf{M}}}[% \hat{\mathbf{f}}](\hat{\mathbf{q}}(\tau))d\tau}ds,≤ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_K , over~ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ∥ over^ start_ARG bold_L end_ARG ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT + italic_δ ( italic_s ) ) italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT roman_Λ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT [ over^ start_ARG bold_f end_ARG ] ( over^ start_ARG bold_q end_ARG ( italic_τ ) ) italic_d italic_τ end_POSTSUPERSCRIPT italic_d italic_s , tfor-all𝑡\displaystyle\forall\;t∀ italic_t (0,T).absent0𝑇\displaystyle\in(0,T).∈ ( 0 , italic_T ) . (5.9)
Proof.

The dynamics in eq. 5.8 can be rewritten as

ddt𝐞^(t)dd𝑡^𝐞𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{e}}(t)divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_e end_ARG ( italic_t ) =𝐟~(𝐪~(t))𝐟~(𝐪^(t))+𝐟~(𝐪^(t))+𝜹(𝐪^(t))𝐟^(𝐪^(t))𝜹(𝐪^(t)).absent~𝐟~𝐪𝑡~𝐟^𝐪𝑡~𝐟^𝐪𝑡𝜹^𝐪𝑡^𝐟^𝐪𝑡𝜹^𝐪𝑡\displaystyle=\tilde{\mathbf{f}}(\tilde{\mathbf{q}}(t))-\tilde{\mathbf{f}}(% \hat{\mathbf{q}}(t))+\tilde{\mathbf{f}}(\hat{\mathbf{q}}(t))+{\boldsymbol{% \delta}}(\hat{\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{\mathbf{q}}(t))-{% \boldsymbol{\delta}}(\hat{\mathbf{q}}(t)).= over~ start_ARG bold_f end_ARG ( over~ start_ARG bold_q end_ARG ( italic_t ) ) - over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) .

Taking the 𝐌^^𝐌\hat{\mathbf{M}}over^ start_ARG bold_M end_ARG-weighted inner product with 𝐞^(t)^𝐞𝑡\hat{\mathbf{e}}(t)over^ start_ARG bold_e end_ARG ( italic_t ) yields

𝐞^(t),ddt𝐞^(t)𝐌^subscript^𝐞𝑡dd𝑡^𝐞𝑡^𝐌\displaystyle\left\langle\hat{\mathbf{e}}(t),\frac{\textrm{d}}{\textrm{d}t}% \hat{\mathbf{e}}(t)\right\rangle_{\hat{\mathbf{M}}}⟨ over^ start_ARG bold_e end_ARG ( italic_t ) , divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_e end_ARG ( italic_t ) ⟩ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT
=𝐞^(t),𝐟~(𝐪~(t))𝐟~(𝐪^(t))𝐌^+𝐞^(t),𝐟~(𝐪^(t))+𝜹(𝐪^(t))𝐟^(𝐪^(t))𝐌^𝐞^(t),𝜹(𝐪^(t))𝐌^absentsubscript^𝐞𝑡~𝐟~𝐪𝑡~𝐟^𝐪𝑡^𝐌subscript^𝐞𝑡~𝐟^𝐪𝑡𝜹^𝐪𝑡^𝐟^𝐪𝑡^𝐌subscript^𝐞𝑡𝜹^𝐪𝑡^𝐌\displaystyle=\left\langle\hat{\mathbf{e}}(t),\tilde{\mathbf{f}}(\tilde{% \mathbf{q}}(t))-\tilde{\mathbf{f}}(\hat{\mathbf{q}}(t))\right\rangle_{\hat{% \mathbf{M}}}+\left\langle\hat{\mathbf{e}}(t),\tilde{\mathbf{f}}(\hat{\mathbf{q% }}(t))+{\boldsymbol{\delta}}(\hat{\mathbf{q}}(t))-\hat{\mathbf{f}}(\hat{% \mathbf{q}}(t))\right\rangle_{\hat{\mathbf{M}}}-\left\langle\hat{\mathbf{e}}(t% ),{\boldsymbol{\delta}}(\hat{\mathbf{q}}(t))\right\rangle_{\hat{\mathbf{M}}}= ⟨ over^ start_ARG bold_e end_ARG ( italic_t ) , over~ start_ARG bold_f end_ARG ( over~ start_ARG bold_q end_ARG ( italic_t ) ) - over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ⟩ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT + ⟨ over^ start_ARG bold_e end_ARG ( italic_t ) , over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ⟩ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT - ⟨ over^ start_ARG bold_e end_ARG ( italic_t ) , bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ⟩ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT
Λ𝐌^[𝐟~](𝐪^(t))𝐞^(t)𝐌^2+𝐟~(𝐪^(t))+𝜹(𝐪^(t))𝐟^(𝐪^(t))𝐌^𝐞^(t)𝐌^+δ(t)𝐞^(t)𝐌^absentsubscriptΛ^𝐌delimited-[]~𝐟^𝐪𝑡superscriptsubscriptnorm^𝐞𝑡^𝐌2subscriptnorm~𝐟^𝐪𝑡𝜹^𝐪𝑡^𝐟^𝐪𝑡^𝐌subscriptnorm^𝐞𝑡^𝐌𝛿𝑡subscriptnorm^𝐞𝑡^𝐌\displaystyle\leq\Lambda_{\hat{\mathbf{M}}}[\tilde{\mathbf{f}}](\hat{\mathbf{q% }}(t))\left\|\hat{\mathbf{e}}(t)\right\|_{\hat{\mathbf{M}}}^{2}+\left\|\tilde{% \mathbf{f}}(\hat{\mathbf{q}}(t))+{\boldsymbol{\delta}}(\hat{\mathbf{q}}(t))-% \hat{\mathbf{f}}(\hat{\mathbf{q}}(t))\right\|_{\hat{\mathbf{M}}}\left\|\hat{% \mathbf{e}}(t)\right\|_{\hat{\mathbf{M}}}+\delta(t)\left\|\hat{\mathbf{e}}(t)% \right\|_{\hat{\mathbf{M}}}≤ roman_Λ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT [ over~ start_ARG bold_f end_ARG ] ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ over~ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) + bold_italic_δ ( over^ start_ARG bold_q end_ARG ( italic_t ) ) - over^ start_ARG bold_f end_ARG ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT + italic_δ ( italic_t ) ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT
Λ𝐌^[𝐟~](𝐪^(t))𝐞^(t)𝐌^2+PK,𝐐^(𝐪^(t))𝐋^2𝐟~+𝜹Kr𝐞^(t)𝐌^+δ(t)𝐞^(t)𝐌^.absentsubscriptΛ^𝐌delimited-[]~𝐟^𝐪𝑡superscriptsubscriptnorm^𝐞𝑡^𝐌2subscript𝑃𝐾^𝐐^𝐪𝑡subscriptnorm^𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟subscriptnorm^𝐞𝑡^𝐌𝛿𝑡subscriptnorm^𝐞𝑡^𝐌\displaystyle\leq\Lambda_{\hat{\mathbf{M}}}[\tilde{\mathbf{f}}](\hat{\mathbf{q% }}(t))\left\|\hat{\mathbf{e}}(t)\right\|_{\hat{\mathbf{M}}}^{2}+P_{K,\hat{% \mathbf{Q}}}(\hat{\mathbf{q}}(t))\|\hat{\mathbf{L}}\|_{2}\|\tilde{\mathbf{f}}+% {\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}\left\|\hat{\mathbf{e}}(t)\right\|_{% \hat{\mathbf{M}}}+\delta(t)\left\|\hat{\mathbf{e}}(t)\right\|_{\hat{\mathbf{M}% }}.≤ roman_Λ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT [ over~ start_ARG bold_f end_ARG ] ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_P start_POSTSUBSCRIPT italic_K , over^ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ over^ start_ARG bold_L end_ARG ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT + italic_δ ( italic_t ) ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT .

Therefore

ddt𝐞^(t)𝐌^dd𝑡subscriptnorm^𝐞𝑡^𝐌\displaystyle\frac{\textrm{d}}{\textrm{d}t}\left\|\hat{\mathbf{e}}(t)\right\|_% {\hat{\mathbf{M}}}divide start_ARG d end_ARG start_ARG d italic_t end_ARG ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT =𝐞^(t),ddt𝐞^(t)𝐌^𝐞^(t)𝐌^Λ𝐌^[𝐟~](𝐪^(t))𝐞^(t)𝐌^+PK,𝐐^(𝐪^N(t))𝐋^2𝐟~+𝜹Kr+δ(t).absentsubscript^𝐞𝑡dd𝑡^𝐞𝑡^𝐌subscriptnorm^𝐞𝑡^𝐌subscriptΛ^𝐌delimited-[]~𝐟^𝐪𝑡subscriptnorm^𝐞𝑡^𝐌subscript𝑃𝐾^𝐐subscript^𝐪𝑁𝑡subscriptnorm^𝐋2subscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟𝛿𝑡\displaystyle=\frac{\left\langle\hat{\mathbf{e}}(t),\frac{\textrm{d}}{\textrm{% d}t}\hat{\mathbf{e}}(t)\right\rangle_{\hat{\mathbf{M}}}}{\left\|\hat{\mathbf{e% }}(t)\right\|_{\hat{\mathbf{M}}}}\leq\Lambda_{\hat{\mathbf{M}}}[\tilde{\mathbf% {f}}](\hat{\mathbf{q}}(t))\left\|\hat{\mathbf{e}}(t)\right\|_{\hat{\mathbf{M}}% }+P_{K,\hat{\mathbf{Q}}}(\hat{\mathbf{q}}_{N}(t))\|\hat{\mathbf{L}}\|_{2}\|% \tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}+\delta(t).= divide start_ARG ⟨ over^ start_ARG bold_e end_ARG ( italic_t ) , divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_e end_ARG ( italic_t ) ⟩ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT end_ARG start_ARG ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT end_ARG ≤ roman_Λ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT [ over~ start_ARG bold_f end_ARG ] ( over^ start_ARG bold_q end_ARG ( italic_t ) ) ∥ over^ start_ARG bold_e end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT over^ start_ARG bold_M end_ARG end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_K , over^ start_ARG bold_Q end_ARG end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ( italic_t ) ) ∥ over^ start_ARG bold_L end_ARG ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT + italic_δ ( italic_t ) .

Applying Lemma 5.1 yields the result. ∎

6 Numerical results

In this section, we test Kernel ROMs on several numerical examples using both POD and QM for dimension reduction. In each experiment, we construct Kernel ROMs with three kernel designs: 1) a feature map kernel encoding the full structure of the projection-based ROM, abbreviated “FM”; 2) an RBF kernel, marked “RBF”; and 3) a feature map-RBF hybrid kernel, labeled “Hybrid”. We also compare to the performance of intrusive projection-based ROMs in the first two examples and to OpInf in all three examples.

6.1 1D Advection-diffusion equation

We first consider a linear PDE, the advection-diffusion equation in one spatial dimension with periodic boundary conditions:

tq(x,t)κ2x2q(x,t)+βxq(x,t)=0,𝑡𝑞𝑥𝑡𝜅superscript2superscript𝑥2𝑞𝑥𝑡𝛽𝑥𝑞𝑥𝑡0\displaystyle\frac{\partial}{\partial t}q(x,t)-\kappa\frac{\partial^{2}}{% \partial x^{2}}q(x,t)+\beta\frac{\partial}{\partial x}q(x,t)=0,divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG italic_q ( italic_x , italic_t ) - italic_κ divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_q ( italic_x , italic_t ) + italic_β divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG italic_q ( italic_x , italic_t ) = 0 , x(0,1),t(0,T),formulae-sequence𝑥01𝑡0𝑇\displaystyle\qquad x\in(0,1),\quad t\in(0,T),italic_x ∈ ( 0 , 1 ) , italic_t ∈ ( 0 , italic_T ) , (6.1a)
q(0,t)=q(1,t),xq(0,t)=xq(1,t),formulae-sequence𝑞0𝑡𝑞1𝑡𝑥𝑞0𝑡𝑥𝑞1𝑡\displaystyle q(0,t)=q(1,t),\quad\frac{\partial}{\partial x}q(0,t)=\frac{% \partial}{\partial x}q(1,t),italic_q ( 0 , italic_t ) = italic_q ( 1 , italic_t ) , divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG italic_q ( 0 , italic_t ) = divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG italic_q ( 1 , italic_t ) , t(0,T),𝑡0𝑇\displaystyle\qquad t\in(0,T),italic_t ∈ ( 0 , italic_T ) , (6.1b)
q(x,0)=q0(x;𝝁)e(xμ1)2/μ22,𝑞𝑥0subscript𝑞0𝑥𝝁superscript𝑒superscript𝑥subscript𝜇12superscriptsubscript𝜇22\displaystyle q(x,0)=q_{0}(x;{\boldsymbol{\mu}})\coloneqq e^{-({x-\mu_{1}})^{2% }/\mu_{2}^{2}},italic_q ( italic_x , 0 ) = italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ; bold_italic_μ ) ≔ italic_e start_POSTSUPERSCRIPT - ( italic_x - italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , x(0,1).𝑥01\displaystyle\qquad x\in(0,1).italic_x ∈ ( 0 , 1 ) . (6.1c)

Here, κ>0𝜅0\kappa>0italic_κ > 0 is the diffusion parameter, β0𝛽0\beta\geq 0italic_β ≥ 0 is the advection parameter, T>0𝑇0T>0italic_T > 0 is the final time, and 𝝁=(μ1,μ2)𝝁subscript𝜇1subscript𝜇2{\boldsymbol{\mu}}=(\mu_{1},\mu_{2})bold_italic_μ = ( italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) parameterizes the initial condition. For this experiment, we set κ=102𝜅superscript102\kappa=10^{-2}italic_κ = 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, β=1𝛽1\beta=1italic_β = 1, and T=1𝑇1T=1italic_T = 1. The initial condition is a Gaussian pulse with center μ1[0.25,0.35]subscript𝜇10.250.35\mu_{1}\in[0.25,0.35]italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ [ 0.25 , 0.35 ] and width μ2[0.05,0.15]subscript𝜇20.050.15\mu_{2}\in[0.05,0.15]italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ [ 0.05 , 0.15 ]. The dynamics of eq. 6.1 are linear, but advective phenomena can be difficult to capture with linear dimension reduction methods such as POD.

Refer to caption
Figure 1: Solutions of the full-order advection diffusion model eq. 6.2 with initial conditions eq. 6.1c for various choices of 𝝁𝝁{\boldsymbol{\mu}}bold_italic_μ.

Spatially discretizing eq. 6.1 with an upwind finite difference scheme over a grid of nq+1subscript𝑛𝑞1n_{q}+1italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT + 1 uniformly spaced points in the spatial domain [0,1]01[0,1][ 0 , 1 ] results in a linear FOM of the form

ddt𝐪(t)dd𝑡𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) =𝐀𝐪(t),𝐪(0)=𝐪0(𝝁),formulae-sequenceabsent𝐀𝐪𝑡𝐪0subscript𝐪0𝝁\displaystyle=\mathbf{A}\mathbf{q}(t),\qquad\mathbf{q}(0)=\mathbf{q}_{0}({% \boldsymbol{\mu}}),= bold_Aq ( italic_t ) , bold_q ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (6.2)

where 𝐪(t),𝐪0(𝝁)nq\mathbf{q}(t),\mathbf{q}_{0}({\boldsymbol{\mu}})\in{}^{n_{q}}bold_q ( italic_t ) , bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐀nq×nq\mathbf{A}\in{}^{n_{q}\times n_{q}}bold_A ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT. We use nq=256subscript𝑛𝑞256n_{q}=256italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = 256 spatial degrees of freedom in this experiment. To collect training data, we sample M=10𝑀10M=10italic_M = 10 initial conditions corresponding to 10101010 Latin hypercube samples from the parameter domain 𝒟=[0.25,0.35]×[0.05,0.15]𝒟0.250.350.050.15{\cal D}=[0.25,0.35]\times[0.05,0.15]caligraphic_D = [ 0.25 , 0.35 ] × [ 0.05 , 0.15 ] and integrate the FOM eq. 6.2 using a fully implicit variable-order backwards difference formula (BDF) time stepper with quasi-constant step size, executed with scipy.interpolate.solve_ivp() in Python [60, 55]. The solution is recorded at nt=256subscript𝑛𝑡256n_{t}=256italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 256 equally spaced time instances after the initial condition, resulting in M(nt+1)=2570𝑀subscript𝑛𝑡12570M(n_{t}+1)=2570italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) = 2570 total training snapshots. We also solve the FOM at the testing parameter value 𝝁¯=(0.3,0.1)¯𝝁0.30.1\bar{{\boldsymbol{\mu}}}=(0.3,0.1)over¯ start_ARG bold_italic_μ end_ARG = ( 0.3 , 0.1 ), which is not included in the training set. Figure 1 plots the FOM states for two training parameter values and the testing parameter value.

POD ϕ(𝐪^)=[1𝐪^],𝐆=11+r𝐈1+rformulae-sequencebold-italic-ϕ^𝐪matrix1^𝐪𝐆11𝑟subscript𝐈1𝑟{\boldsymbol{\phi}}(\hat{\mathbf{q}})=\begin{bmatrix}1\\ \hat{\mathbf{q}}\end{bmatrix},\qquad\mathbf{G}=\frac{1}{1+r}\mathbf{I}_{1+r}bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) = [ start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG end_CELL end_ROW end_ARG ] , bold_G = divide start_ARG 1 end_ARG start_ARG 1 + italic_r end_ARG bold_I start_POSTSUBSCRIPT 1 + italic_r end_POSTSUBSCRIPT
QM ϕ(𝐪^)=[1𝐪^𝐪^𝐪^],𝐆=[𝐈1+r𝟎𝟎𝐖F𝐈r2]formulae-sequencebold-italic-ϕ^𝐪matrix1^𝐪tensor-product^𝐪^𝐪𝐆matrixsubscript𝐈1𝑟00subscriptnorm𝐖𝐹subscript𝐈superscript𝑟2{\boldsymbol{\phi}}(\hat{\mathbf{q}})=\begin{bmatrix}1\\ \hat{\mathbf{q}}\\ \hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\end{bmatrix},\qquad\mathbf{G}=\begin{% bmatrix}\mathbf{I}_{1+r}&\mathbf{0}\\ \mathbf{0}&\left\|\mathbf{W}\right\|_{F}\mathbf{I}_{r^{2}}\end{bmatrix}bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) = [ start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG end_CELL end_ROW end_ARG ] , bold_G = [ start_ARG start_ROW start_CELL bold_I start_POSTSUBSCRIPT 1 + italic_r end_POSTSUBSCRIPT end_CELL start_CELL bold_0 end_CELL end_ROW start_ROW start_CELL bold_0 end_CELL start_CELL ∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT bold_I start_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ]
Table 2: Feature maps and weighting matrices in POD and QM Kernel ROMs for the 1D advection-diffusion example.

The training snapshots are used to compute POD and QM state approximations with the reference vector 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG set to the average training snapshot. Since the FOM eq. 6.2 is linear and 𝐪¯𝟎¯𝐪0\bar{\mathbf{q}}\neq\bf 0over¯ start_ARG bold_q end_ARG ≠ bold_0, the intrusive projection-based POD ROM of dimension r𝑟ritalic_r has affine structure,

ddt𝐪~(t)=𝐜~+𝐀~𝐪~(t),dd𝑡~𝐪𝑡~𝐜~𝐀~𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{c}}+\tilde{\mathbf{A}}\tilde{\mathbf{q}}(t),divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_c end_ARG + over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) , (6.3)

where 𝐜~r\tilde{\mathbf{c}}\in{}^{r}over~ start_ARG bold_c end_ARG ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT and 𝐀~r×r\tilde{\mathbf{A}}\in{}^{r\times r}over~ start_ARG bold_A end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT, whereas the intrusive QM ROM has the form

ddt𝐪~(t)=𝐜~+𝐀~𝐪~(t)+𝐇~[𝐪~(t)𝐪~(t)],dd𝑡~𝐪𝑡~𝐜~𝐀~𝐪𝑡~𝐇delimited-[]tensor-product~𝐪𝑡~𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{c}}+\tilde{\mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)],divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_c end_ARG + over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , (6.4)

with 𝐜~r\tilde{\mathbf{c}}\in{}^{r}over~ start_ARG bold_c end_ARG ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT, 𝐀~r×r\tilde{\mathbf{A}}\in{}^{r\times r}over~ start_ARG bold_A end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT, and 𝐇~r×r2\tilde{\mathbf{H}}\in{}^{r\times r^{2}}over~ start_ARG bold_H end_ARG ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. For both POD and QM, we construct feature map Kernel ROMs and OpInf ROMs with the corresponding intrusive ROM structure. The underlying feature maps ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ and weighting matrices 𝐆𝐆\mathbf{G}bold_G are listed in Table 2. Note that the second diagonal block in the weight 𝐆𝐆\mathbf{G}bold_G for QM is scaled by 𝐖Fsubscriptnorm𝐖𝐹\left\|\mathbf{W}\right\|_{F}∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT to account for the fact that 𝐇~~𝐇\tilde{\mathbf{H}}over~ start_ARG bold_H end_ARG in the intrusive QM ROM eq. 6.4 also depends on 𝐖𝐖\mathbf{W}bold_W. We also construct an RBF Kernel ROM using a Gaussian kernel-generating RBF ψ𝜓\psiitalic_ψ (see Table 1) with fixed shape parameter ϵ=101italic-ϵsuperscript101\epsilon=10^{-1}italic_ϵ = 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. This ROM has the same evolution equations in the POD and QM cases, since the compression map 𝐡𝐡\mathbf{h}bold_h is the same in both instances, but we report results for both POD and QM decompression maps 𝐠𝐠\mathbf{g}bold_g. Finally, we construct hybrid Kernel ROMs using the POD feature map from Table 2 with weighting coefficient cϕ=1subscript𝑐italic-ϕ1c_{\phi}=1italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = 1 and a Gaussian RBF kernel with ϵ=0.1italic-ϵ0.1\epsilon=0.1italic_ϵ = 0.1 and weighting coefficient cψ=103subscript𝑐𝜓superscript103c_{\psi}=10^{-3}italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, yielding ROMs with the following structure:

ddt𝐪^(t)=𝐜^+𝐀^𝐪^(t)+103𝛀𝖳𝝍ϵ(𝐪^(t)).dd𝑡^𝐪𝑡^𝐜^𝐀^𝐪𝑡superscript103superscript𝛀𝖳subscript𝝍italic-ϵ^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{c}% }+\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+10^{-3}{\boldsymbol{\Omega}}^{\mathsf{T}% }{\boldsymbol{\psi}}_{\!\epsilon}(\hat{\mathbf{q}}(t)).divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_c end_ARG + over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG ( italic_t ) ) . (6.5)

For QM, the RBF term takes the place of the quadratic nonlinearity 𝐇~[𝐪~(t)𝐪~(t)]~𝐇delimited-[]tensor-product~𝐪𝑡~𝐪𝑡\tilde{\mathbf{H}}[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]over~ start_ARG bold_H end_ARG [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ], but for POD, the RBF term is purely supplementary. Kernel input normalization as in Remark 2.1 is not needed in this problem. Performance is measured with a relative Lsuperscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT error between the FOM and reconstructed ROM states,

𝐞(𝐪,𝐪^)=maxk𝐪(tk)𝐠(𝐪^(tk))2maxk𝐪(tk)2,𝐞𝐪^𝐪subscript𝑘subscriptnorm𝐪subscript𝑡𝑘𝐠^𝐪subscript𝑡𝑘2subscript𝑘subscriptnorm𝐪subscript𝑡𝑘2\displaystyle\mathbf{e}(\mathbf{q},\hat{\mathbf{q}})=\frac{\max_{k}\;\left\|% \mathbf{q}(t_{k})-\mathbf{g}(\hat{\mathbf{q}}(t_{k}))\right\|_{2}}{\max_{k}\;% \left\|\mathbf{q}(t_{k})\right\|_{2}},bold_e ( bold_q , over^ start_ARG bold_q end_ARG ) = divide start_ARG roman_max start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ bold_q ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - bold_g ( over^ start_ARG bold_q end_ARG ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG roman_max start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ bold_q ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG , (6.6)

where the ROMs are integrated with the same BDF time stepper as the FOM and the maxima are taken over time indices k{0,1,,nt}𝑘01subscript𝑛𝑡k\in\{0,1,\ldots,n_{t}\}italic_k ∈ { 0 , 1 , … , italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT }. The ROM error is bounded from below by the projection error 𝐞(𝐪,𝐡(𝐪))𝐞𝐪𝐡𝐪\mathbf{e}(\mathbf{q},\mathbf{h}(\mathbf{q}))bold_e ( bold_q , bold_h ( bold_q ) ).

Refer to caption
Figure 2: Relative ROM error at the test parameter 𝝁¯=(0.3,0.1)¯𝝁0.30.1\bar{{\boldsymbol{\mu}}}=(0.3,0.1)over¯ start_ARG bold_italic_μ end_ARG = ( 0.3 , 0.1 ) as a function of number of basis vectors in linear POD (left) and quadratic manifold (right) reduced state approximations for the advection-diffusion problem eq. 6.1.

Results are reported in Figure 2, which compares ROM and projection errors at the testing parameter value 𝝁¯¯𝝁\bar{{\boldsymbol{\mu}}}over¯ start_ARG bold_italic_μ end_ARG for both POD and QM as a function of the reduced dimension r𝑟ritalic_r. For each Kernel ROM, the regularization hyperparameter γ𝛾\gammaitalic_γ for the learning problem eq. 4.5 is selected to minimize the ROM error over the training data, i.e.,

γ=argmin𝛾=1Mk=0nt𝐪^k()𝐪^(tk;𝝁,γ)2,𝛾𝛾superscriptsubscript1𝑀superscriptsubscript𝑘0subscript𝑛𝑡subscriptnormsuperscriptsubscript^𝐪𝑘^𝐪subscript𝑡𝑘subscript𝝁𝛾2\displaystyle\gamma=\underset{\gamma}{\arg\min}\sum_{\ell=1}^{M}\sum_{k=0}^{n_% {t}}\big{\|}\hat{\mathbf{q}}_{k}^{(\ell)}-\hat{\mathbf{q}}(t_{k};{\boldsymbol{% \mu}}_{\ell},\gamma)\big{\|}_{2},italic_γ = underitalic_γ start_ARG roman_arg roman_min end_ARG ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∥ over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT - over^ start_ARG bold_q end_ARG ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ; bold_italic_μ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT , italic_γ ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , (6.7)

where 𝐪^k()superscriptsubscript^𝐪𝑘\hat{\mathbf{q}}_{k}^{(\ell)}over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT are the training snapshots eq. 4.2 and 𝐪^(t;𝝁,γ)^𝐪𝑡subscript𝝁𝛾\hat{\mathbf{q}}(t;{\boldsymbol{\mu}}_{\ell},\gamma)over^ start_ARG bold_q end_ARG ( italic_t ; bold_italic_μ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT , italic_γ ) denotes the solution to the Kernel ROM with regularization γ𝛾\gammaitalic_γ evaluated for training parameter 𝝁subscript𝝁{\boldsymbol{\mu}}_{\ell}bold_italic_μ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT. In this experiment, we do this via a grid search over γ{1014,1013,,102}𝛾superscript1014superscript1013superscript102\gamma\in\{10^{-14},10^{-13},\ldots,10^{2}\}italic_γ ∈ { 10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT , … , 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } for each Kernel ROM. This procedure is adapted from best practices for OpInf [34, 42]; a similar selection is carried out for OpInf ROMs with the regularization matrix 𝚪𝚪{\boldsymbol{\Gamma}}bold_Γ parameterized so that

𝚪𝐎^𝖳F2=γ12(𝐜^22+𝐀^F2)+γ22𝐇^F2,superscriptsubscriptnorm𝚪superscript^𝐎𝖳𝐹2superscriptsubscript𝛾12superscriptsubscriptnorm^𝐜22superscriptsubscriptnorm^𝐀𝐹2superscriptsubscript𝛾22superscriptsubscriptnorm^𝐇𝐹2\displaystyle\big{\|}{\boldsymbol{\Gamma}}\hat{\mathbf{O}}^{\mathsf{T}}\big{\|% }_{F}^{2}=\gamma_{1}^{2}(\|\hat{\mathbf{c}}\|_{2}^{2}+\|\hat{\mathbf{A}}\|_{F}% ^{2})+\gamma_{2}^{2}\|\hat{\mathbf{H}}\|_{F}^{2},∥ bold_Γ over^ start_ARG bold_O end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∥ over^ start_ARG bold_c end_ARG ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ over^ start_ARG bold_A end_ARG ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ over^ start_ARG bold_H end_ARG ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (6.8)

where γ1,γ20subscript𝛾1subscript𝛾20\gamma_{1},\gamma_{2}\geq 0italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≥ 0. This is the state-of-the-art procedure for OpInf and results in accurate ROMs. Indeed, Figure 2 shows that each of the POD-based ROMs yield errors that are nearly identical to the POD projection error for r15𝑟15r\leq 15italic_r ≤ 15. The POD RBF Kernel ROM error plateaus for r>15𝑟15r>15italic_r > 15, possibly due to the RBF shape parameter being fixed independent of r𝑟ritalic_r. The POD hybrid Kernel ROM error begins to plateau for r>17𝑟17r>17italic_r > 17, again possibly due to the fixed RBF shape parameter and fixed weighting coefficients cϕsubscript𝑐italic-ϕc_{\phi}italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT and cψsubscript𝑐𝜓c_{\psi}italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT. The OpInf ROMs and feature map Kernel ROMs match the projection error for r20𝑟20r\leq 20italic_r ≤ 20, but deviate slightly from the projection and intrusive ROM errors for some values of r>20𝑟20r>20italic_r > 20.

Refer to caption
Figure 3: Effect of the quadratic manifold regularization parameter ρ𝜌\rhoitalic_ρ on the projection error and intrusive ROM error for two different reduced state dimensions r𝑟ritalic_r, using data from the advection-diffusion problem eq. 6.1 at the test parameter 𝝁¯=(0.3,0.1)¯𝝁0.30.1\bar{{\boldsymbol{\mu}}}=(0.3,0.1)over¯ start_ARG bold_italic_μ end_ARG = ( 0.3 , 0.1 ).

The QM regularization parameter ρ0𝜌0\rho\geq 0italic_ρ ≥ 0 in eq. 3.12 plays an important role in the stability and accuracy of QM ROMs, see Appendix B for a stability analysis of the intrusive QM ROM for a linear FOM. Figure 3 plots the value of ρ𝜌\rhoitalic_ρ versus the projection error and the intrusive ROM error for two choices of the reduced dimension r𝑟ritalic_r. As is evident from eq. 3.12, 𝐖F0subscriptnorm𝐖𝐹0\left\|\mathbf{W}\right\|_{F}\to 0∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT → 0 as ρ𝜌\rhoitalic_ρ increases, which is why the QM projection and QM ROM errors approach their POD counterparts for large enough ρ𝜌\rhoitalic_ρ. Note that the optimal ρ𝜌\rhoitalic_ρ varies with the reduced state dimension r𝑟ritalic_r. Furthermore, at least for r=12𝑟12r=12italic_r = 12, the best ρ𝜌\rhoitalic_ρ for the reconstruction error is not necessarily the best ρ𝜌\rhoitalic_ρ for the intrusive QM ROM error. To account for this, the QM results in Figure 2 report only the best results for each ROM after testing each of the QM regularization values ρ{103,102,,108}𝜌superscript103superscript102superscript108\rho\in\{10^{-3},10^{-2},\ldots,10^{8}\}italic_ρ ∈ { 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , … , 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT }. In other words, Figure 2 shows a best-case scenario comparison. The QM OpInf ROMs and QM feature map Kernel ROMs again show highly similar performance, while the QM RBF and QM hybrid Kernel ROM errors plateau for r>17𝑟17r>17italic_r > 17. Note that the POD and QM projection errors are close for r>15𝑟15r>15italic_r > 15, indicating that in this particular problem QM results in diminishing returns over POD for large enough r𝑟ritalic_r.

Refer to caption
Refer to caption
Figure 4: Approximate error bounds for POD and QM Kernel ROMs for the advection-diffusion problem eq. 6.1.

Next, we compute the error bound from Theorem 5.1 for the feature map Kernel ROMs for r{6,12}𝑟612r\in\{6,12\}italic_r ∈ { 6 , 12 }. Although the computed Kernel ROMs use a nonzero regularization γ0𝛾0\gamma\neq 0italic_γ ≠ 0, the computed error bounds still hold. We estimate the norm 𝐟~+𝜹Krsubscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT with the norm of the interpolant 𝐟^Krsubscriptnorm^𝐟superscriptsubscript𝐾𝑟\|\hat{\mathbf{f}}\|_{{\cal H}_{K}^{r}}∥ over^ start_ARG bold_f end_ARG ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, which can be computed quickly and explicitly using equation eq. 2.1. The local logarithmic Lipschitz constant Λ𝐌[𝐟](𝐠(𝐪^(s)))subscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑠\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(s)))roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ) is estimated using the logarithmic norm λ𝐌(𝐟(𝐪^(s)))subscript𝜆𝐌𝐟^𝐪𝑠\lambda_{\mathbf{M}}(\mathbf{f}(\hat{\mathbf{q}}(s)))italic_λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT ( bold_f ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ), and the weighting matrix 𝐌𝐌\mathbf{M}bold_M is taken to be 1r𝐈r1𝑟subscript𝐈𝑟\frac{1}{r}\mathbf{I}_{r}divide start_ARG 1 end_ARG start_ARG italic_r end_ARG bold_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. We also examine feature map Kernel ROMs where the chosen feature map does not match the true projection-based ROM form, i.e. POD with a quadratic feature map and QM with a linear feature map. The results are displayed in Figure 4, which shows that the computed error estimates indeed bound the true error without dramatically overestimating it. In the POD cases with linear ROMs, the αPsubscript𝛼𝑃\alpha_{P}italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT term, which is related to the POD projection errors, is what dominates the error bound computation, while the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term, which corresponds to the pointwise kernel error bound from Corollary 2.2, is negligible. For the QM Quadratic ROM with r=6𝑟6r=6italic_r = 6, αPsubscript𝛼𝑃\alpha_{P}italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT again dominates the error bound and the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT is negligible. However, for the QM Quadratic ROM with r=12𝑟12r=12italic_r = 12, the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term is much larger. This may indicate that the chosen quadratic feature map may yield a non-optimal model form for the Kernel ROM. Indeed, since POD with r=12𝑟12r=12italic_r = 12 already yields small ROM errors, one may expect that a QM is unnecessary for r=12𝑟12r=12italic_r = 12, and thus the quadratic term in the Kernel ROM may be extraneous. To test this, we remove the quadratic term, which comes from the quadratic component of 𝐠𝐠\mathbf{g}bold_g, and compute the error bound for a linear QM Kernel ROM with r=12𝑟12r=12italic_r = 12. We observe that the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term is once again negligible in this case. On the other hand, adding a quadratic term to the POD ROM with r=12𝑟12r=12italic_r = 12 also substantially increases αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT. Therefore, we can infer that a larger αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT contribution may indicate that a non-optimal model form (i.e., feature map) was used for the Kernel ROM.

6.2 1D Burgers’ equation

Refer to caption
Figure 5: Solutions of the full-order Burgers’ model eq. 6.10 with initial conditions eq. 6.9c for various choices of 𝝁𝝁{\boldsymbol{\mu}}bold_italic_μ.

We now consider the 1D viscous Burgers’ equation with homogeneous Dirichlet boundary conditions, which is nonlinear with respect to the state:

tq(x,t)ν2x2q(x,t)+q(x,t)xq(x,t)=0,𝑡𝑞𝑥𝑡𝜈superscript2superscript𝑥2𝑞𝑥𝑡𝑞𝑥𝑡𝑥𝑞𝑥𝑡0\displaystyle\frac{\partial}{\partial t}q(x,t)-\nu\frac{\partial^{2}}{\partial x% ^{2}}q(x,t)+q(x,t)\frac{\partial}{\partial x}q(x,t)=0,divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG italic_q ( italic_x , italic_t ) - italic_ν divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_q ( italic_x , italic_t ) + italic_q ( italic_x , italic_t ) divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG italic_q ( italic_x , italic_t ) = 0 , x(0,1),t(0,T),formulae-sequence𝑥01𝑡0𝑇\displaystyle\qquad x\in(0,1),\quad t\in(0,T),italic_x ∈ ( 0 , 1 ) , italic_t ∈ ( 0 , italic_T ) , (6.9a)
q(0,t)=0,q(1,t)=0,formulae-sequence𝑞0𝑡0𝑞1𝑡0\displaystyle q(0,t)=0,\quad q(1,t)=0,italic_q ( 0 , italic_t ) = 0 , italic_q ( 1 , italic_t ) = 0 , t(0,T),𝑡0𝑇\displaystyle\qquad t\in(0,T),italic_t ∈ ( 0 , italic_T ) , (6.9b)
q(x,0)=q0(x;𝝁)e(xμ1)2/μ22,𝑞𝑥0subscript𝑞0𝑥𝝁superscript𝑒superscript𝑥subscript𝜇12superscriptsubscript𝜇22\displaystyle q(x,0)=q_{0}(x;{\boldsymbol{\mu}})\coloneqq e^{-(x-\mu_{1})^{2}/% \mu_{2}^{2}},italic_q ( italic_x , 0 ) = italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ; bold_italic_μ ) ≔ italic_e start_POSTSUPERSCRIPT - ( italic_x - italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT , x(0,1).𝑥01\displaystyle\qquad x\in(0,1).italic_x ∈ ( 0 , 1 ) . (6.9c)

Here, ν>0𝜈0\nu>0italic_ν > 0 is the viscosity, which we set to ν=102𝜈superscript102\nu=10^{-2}italic_ν = 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT for our experiments. Solutions to this system are characterized by sharp gradients along an advection front. Just as in the previous problem, we consider parameterized Gaussian initial conditions with center μ1[0.25,0.35]subscript𝜇10.250.35\mu_{1}\in[0.25,0.35]italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ [ 0.25 , 0.35 ] and μ2[0.05,0.15]subscript𝜇20.050.15\mu_{2}\in[0.05,0.15]italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ [ 0.05 , 0.15 ], set the final time to T=1𝑇1T=1italic_T = 1, use nq=nt=256subscript𝑛𝑞subscript𝑛𝑡256n_{q}=n_{t}=256italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 256 spatial degrees of freedom and temporal observations, and draw M=10𝑀10M=10italic_M = 10 latin hypercube samples of the parameters 𝝁=[μ1μ2]𝖳𝝁superscriptdelimited-[]subscript𝜇1subscript𝜇2𝖳{\boldsymbol{\mu}}=[~{}\mu_{1}~{}~{}\mu_{2}~{}]^{\mathsf{T}}bold_italic_μ = [ italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT to use for generating training data. The spatial discretization uses uniform centered finite differences, yielding a quadratic FOM of the form

ddt𝐪(t)=𝐀𝐪(t)+𝐇[𝐪(t)𝐪(t)],𝐪(0)=𝐪0(𝝁),formulae-sequencedd𝑡𝐪𝑡𝐀𝐪𝑡𝐇delimited-[]tensor-product𝐪𝑡𝐪𝑡𝐪0subscript𝐪0𝝁\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{A}\mathbf{q}(% t)+\mathbf{H}[\mathbf{q}(t)\otimes\mathbf{q}(t)],\qquad\mathbf{q}(0)=\mathbf{q% }_{0}({\boldsymbol{\mu}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_Aq ( italic_t ) + bold_H [ bold_q ( italic_t ) ⊗ bold_q ( italic_t ) ] , bold_q ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (6.10)

where 𝐪(t),𝐪0(𝝁)nq\mathbf{q}(t),\mathbf{q}_{0}({\boldsymbol{\mu}})\in{}^{n_{q}}bold_q ( italic_t ) , bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, 𝐀nq×nq\mathbf{A}\in{}^{n_{q}\times n_{q}}bold_A ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT, and 𝐇nq×nq2\mathbf{H}\in{}^{n_{q}\times n_{q}^{2}}bold_H ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. We again use a BDF time integrator to solve the FOM (and constructed ROMs) at the parameter samples, resulting in M=10𝑀10M=10italic_M = 10 trajectories of nt+1=257subscript𝑛𝑡1257n_{t}+1=257italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 = 257 snapshots each. The FOM states for a few parameter values are displayed in Figure 5.

POD ϕ(𝐪^)=[1𝐪^𝐪^𝐪^],𝐆=11+r+r2𝐈1+r+r2formulae-sequencebold-italic-ϕ^𝐪matrix1^𝐪tensor-product^𝐪^𝐪𝐆11𝑟superscript𝑟2subscript𝐈1𝑟superscript𝑟2{\boldsymbol{\phi}}(\hat{\mathbf{q}})=\begin{bmatrix}1\\ \hat{\mathbf{q}}\\ \hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\end{bmatrix},\qquad\mathbf{G}=\frac{1}% {1+r+r^{2}}\mathbf{I}_{1+r+r^{2}}bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) = [ start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG end_CELL end_ROW end_ARG ] , bold_G = divide start_ARG 1 end_ARG start_ARG 1 + italic_r + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG bold_I start_POSTSUBSCRIPT 1 + italic_r + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT
QM ϕ(𝐪^)=[1𝐪^𝐪^𝐪^𝐪^𝐪^𝐪^𝐪^𝐪^𝐪^𝐪^],𝐆=[𝐈1+r+r2𝟎𝟎𝟎𝐖F𝐈r3𝟎𝟎𝟎𝐖F2𝐈r4]formulae-sequencebold-italic-ϕ^𝐪matrix1^𝐪tensor-product^𝐪^𝐪tensor-product^𝐪^𝐪^𝐪tensor-product^𝐪^𝐪^𝐪^𝐪𝐆matrixsubscript𝐈1𝑟superscript𝑟2000subscriptnorm𝐖𝐹subscript𝐈superscript𝑟3000superscriptsubscriptnorm𝐖𝐹2subscript𝐈superscript𝑟4{\boldsymbol{\phi}}(\hat{\mathbf{q}})=\begin{bmatrix}1\\ \hat{\mathbf{q}}\\ \hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\\ \hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\\ \hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\otimes\hat{\mathbf{q}}\otimes\hat{% \mathbf{q}}\end{bmatrix},\qquad\mathbf{G}=\begin{bmatrix}\mathbf{I}_{1+r+r^{2}% }&\mathbf{0}&\mathbf{0}\\ \mathbf{0}&\left\|\mathbf{W}\right\|_{F}\mathbf{I}_{r^{3}}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}&\left\|\mathbf{W}\right\|_{F}^{2}\mathbf{I}_{r^{4}}\\ \end{bmatrix}bold_italic_ϕ ( over^ start_ARG bold_q end_ARG ) = [ start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG end_CELL end_ROW start_ROW start_CELL over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG ⊗ over^ start_ARG bold_q end_ARG end_CELL end_ROW end_ARG ] , bold_G = [ start_ARG start_ROW start_CELL bold_I start_POSTSUBSCRIPT 1 + italic_r + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL bold_0 end_CELL start_CELL bold_0 end_CELL end_ROW start_ROW start_CELL bold_0 end_CELL start_CELL ∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT bold_I start_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL bold_0 end_CELL end_ROW start_ROW start_CELL bold_0 end_CELL start_CELL bold_0 end_CELL start_CELL ∥ bold_W ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_I start_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ]
Table 3: Feature maps and weighting matrices for POD and QM Kernel ROMs for the 1D Burgers’ example.

For both POD and QM, we use 𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\bf 0over¯ start_ARG bold_q end_ARG = bold_0, hence the intrusive POD ROM takes the quadratic form eq. 3.15, whereas the intrusive QM ROM has the quartic form eq. 3.16. For this problem, we apply the kernel input normalization discussed in Remark 2.1, which is helpful for balancing the contribution of higher-order terms. We therefore construct feature map Kernel ROMs to mirror the structure of the intrusive models, with the addition of a constant term that arises due to the input scaling (see Appendix A), by using the feature maps and weighting matrices listed in Table 3. Similar to before, we learn Gaussian RBF Kernel ROMs with fixed shape parameter ϵ=101italic-ϵsuperscript101\epsilon=10^{-1}italic_ϵ = 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and hybrid Kernel ROMs using the POD feature map from Table 3 with weighting coefficient cϕ=1subscript𝑐italic-ϕ1c_{\phi}=1italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = 1 and a Gaussian RBF kernel with ϵ=0.1italic-ϵ0.1\epsilon=0.1italic_ϵ = 0.1 and weighting coefficient cψ=103subscript𝑐𝜓superscript103c_{\psi}=10^{-3}italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, which result in ROMs of the form

ddt𝐪^(t)=𝐜^+𝐀^𝐪^(t)+𝐇~[𝐪~(t)𝐪~(t)]+103𝛀𝖳𝝍ϵ(𝐪~(t)).dd𝑡^𝐪𝑡^𝐜^𝐀^𝐪𝑡~𝐇delimited-[]tensor-product~𝐪𝑡~𝐪𝑡superscript103superscript𝛀𝖳subscript𝝍italic-ϵ~𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{c}% }+\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+\tilde{\mathbf{H}}[\tilde{\mathbf{q}}(t)% \otimes\tilde{\mathbf{q}}(t)]+10^{-3}{\boldsymbol{\Omega}}^{\mathsf{T}}{% \boldsymbol{\psi}}_{\!\epsilon}(\tilde{\mathbf{q}}(t)).divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_c end_ARG + over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT bold_Ω start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG ( italic_t ) ) . (6.11)

We also learn OpInf ROMs with the intrusive ROM structure, with the regularization designed so

𝚪𝐎^𝖳F2=γ12𝐀^F2+γ22𝐇^F2superscriptsubscriptnorm𝚪superscript^𝐎𝖳𝐹2superscriptsubscript𝛾12superscriptsubscriptnorm^𝐀𝐹2superscriptsubscript𝛾22superscriptsubscriptnorm^𝐇𝐹2\displaystyle\big{\|}{\boldsymbol{\Gamma}}\hat{\mathbf{O}}^{\mathsf{T}}\big{\|% }_{F}^{2}=\gamma_{1}^{2}\|\hat{\mathbf{A}}\|_{F}^{2}+\gamma_{2}^{2}\|\hat{% \mathbf{H}}\|_{F}^{2}∥ bold_Γ over^ start_ARG bold_O end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ over^ start_ARG bold_A end_ARG ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ over^ start_ARG bold_H end_ARG ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (6.12)

for the POD OpInf ROM, and

𝚪𝐎^𝖳F2=γ32(𝐇^2F2+𝐇^3F2)+γ42𝐇^4F2superscriptsubscriptnorm𝚪superscript^𝐎𝖳𝐹2superscriptsubscript𝛾32superscriptsubscriptnormsubscript^𝐇2𝐹2superscriptsubscriptnormsubscript^𝐇3𝐹2superscriptsubscript𝛾42superscriptsubscriptnormsubscript^𝐇4𝐹2\displaystyle\big{\|}{\boldsymbol{\Gamma}}\hat{\mathbf{O}}^{\mathsf{T}}\big{\|% }_{F}^{2}=\gamma_{3}^{2}(\|\hat{\mathbf{H}}_{2}\|_{F}^{2}+\|\hat{\mathbf{H}}_{% 3}\|_{F}^{2})+\gamma_{4}^{2}\|\hat{\mathbf{H}}_{4}\|_{F}^{2}∥ bold_Γ over^ start_ARG bold_O end_ARG start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_γ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∥ over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (6.13)

for the QM OpInf ROM, performing a grid search for γ1,,γ4>0subscript𝛾1subscript𝛾40\gamma_{1},\ldots,\gamma_{4}>0italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT > 0. The relative Lsuperscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT error eq. 6.6 is used to evaluate ROM performance at the testing parameter value 𝝁¯=(0.3,0.1)¯𝝁0.30.1\bar{{\boldsymbol{\mu}}}=(0.3,0.1)over¯ start_ARG bold_italic_μ end_ARG = ( 0.3 , 0.1 ).

Refer to caption
Figure 6: Relative ROM error at the test parameter 𝝁¯=(0.3,0.1)¯𝝁0.30.1\bar{{\boldsymbol{\mu}}}=(0.3,0.1)over¯ start_ARG bold_italic_μ end_ARG = ( 0.3 , 0.1 ) as a function of number of basis vectors in linear POD (left) and quadratic manifold (right) state approximations.

Figure 6 reports results for various reduced dimensions r𝑟ritalic_r. All POD ROM errors are nearly identical to the POD projection error. For the QM ROMs, the OpInf and Kernel ROMs have very similar performance for r14𝑟14r\leq 14italic_r ≤ 14. The feature map Kernel ROM errors plateau for r>14𝑟14r>14italic_r > 14, while the OpInf and RBF Kernel ROMs plateau for 16<r<1816𝑟1816<r<1816 < italic_r < 18 and increase slightly for r=19,20𝑟1920r=19,20italic_r = 19 , 20. Notably, the hybrid Kernel ROM continues to match the projection and intrusive ROM error as r𝑟ritalic_r increases, indicating that the RBF term in eq. 6.11 acts as a more accurate closure term for the ROM dynamics at larger values of r𝑟ritalic_r compared to the cubic and quartic nonlinearities of the OpInf and FM Kernel ROMs. Unlike the advection-diffusion case, the QM projection and intrusive ROM errors are notably lower than the corresponding POD errors, and thus QM dimension reduction may be beneficial for this problem.

Refer to caption
Refer to caption
Figure 7: Approximate error bound for POD and QM kernel ROMs for different values of r𝑟ritalic_r.

We next compute the error bound from Theorem 5.1 for the FM Kernel ROMs for r=6,12𝑟612r=6,12italic_r = 6 , 12. The quantities 𝐟~+𝜹Krsubscriptnorm~𝐟𝜹superscriptsubscript𝐾𝑟\|\tilde{\mathbf{f}}+{\boldsymbol{\delta}}\|_{{\cal H}_{K}^{r}}∥ over~ start_ARG bold_f end_ARG + bold_italic_δ ∥ start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, δ(s)𝛿𝑠\delta(s)italic_δ ( italic_s ), Λ𝐌[𝐟](𝐠(𝐪^(s)))subscriptΛ𝐌delimited-[]𝐟𝐠^𝐪𝑠\Lambda_{\mathbf{M}}[\mathbf{f}](\mathbf{g}(\hat{\mathbf{q}}(s)))roman_Λ start_POSTSUBSCRIPT bold_M end_POSTSUBSCRIPT [ bold_f ] ( bold_g ( over^ start_ARG bold_q end_ARG ( italic_s ) ) ) are estimated in the same way as in the advection-diffusion case. We use feature map Kernel ROMs corresponding to the quadratic and quartic feature maps in Table 3 and examine the cases when the chosen feature map does not match the true projection-based ROM form, i.e. POD with a quartic feature map and QM with a quadratic feature map. Figure 7 displays the results and shows that the computed error estimate again bounds the true error without dramatically overestimating it. In the POD cases with quadratic ROMs, the αPsubscript𝛼𝑃\alpha_{P}italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT term dominates the error bound contribution, while the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term is negligible in the r=6𝑟6r=6italic_r = 6 case, but less negligible in the r=12𝑟12r=12italic_r = 12 case. For the QM quartic ROMs, the αPsubscript𝛼𝑃\alpha_{P}italic_α start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT and αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT terms contribute similarly to the error bound evaluation. The r=6𝑟6r=6italic_r = 6 case contrasts with the advection-diffusion QM ROM case in that the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term is non-negligible despite having a model form that should reproduce the projection-based ROM model form. We again compute the error bound for a QM ROM with the cubic and quartic terms removed, which come from the quadratic part of 𝐠𝐠\mathbf{g}bold_g, resulting in a QM quadratic ROM. As in the advection-diffusion example, the αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT term decreases significantly, which may indicate that a quadratic model form may be the better choice for a QM Burgers ROM. To again test if an incorrect model form significantly increases αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT, we compute a POD quartic ROM and observe that αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT is much larger than for the POD quadratic ROM, as expected. This further evidences that a larger αKsubscript𝛼𝐾\alpha_{K}italic_α start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT contribution may indicate that a non-optimal model form is being used for the Kernel ROM.

6.3 2D Euler–Riemann problem

Our last numerical example uses the 2D conservative Euler equations

t[ρρuρvρE]+x[ρuρu2+pρuv(E+p)u]+x[ρvρuvρv2+p(E+p)v]=0,𝑡matrix𝜌𝜌𝑢𝜌𝑣𝜌𝐸𝑥matrix𝜌𝑢𝜌superscript𝑢2𝑝𝜌𝑢𝑣𝐸𝑝𝑢𝑥matrix𝜌𝑣𝜌𝑢𝑣𝜌superscript𝑣2𝑝𝐸𝑝𝑣0\displaystyle\frac{\partial}{\partial t}\begin{bmatrix}\rho\\ \rho u\\ \rho v\\ \rho E\end{bmatrix}+\frac{\partial}{\partial x}\begin{bmatrix}\rho u\\ \rho u^{2}+p\\ \rho uv\\ (E+p)u\end{bmatrix}+\frac{\partial}{\partial x}\begin{bmatrix}\rho v\\ \rho uv\\ \rho v^{2}+p\\ (E+p)v\end{bmatrix}=0,divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG [ start_ARG start_ROW start_CELL italic_ρ end_CELL end_ROW start_ROW start_CELL italic_ρ italic_u end_CELL end_ROW start_ROW start_CELL italic_ρ italic_v end_CELL end_ROW start_ROW start_CELL italic_ρ italic_E end_CELL end_ROW end_ARG ] + divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG [ start_ARG start_ROW start_CELL italic_ρ italic_u end_CELL end_ROW start_ROW start_CELL italic_ρ italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p end_CELL end_ROW start_ROW start_CELL italic_ρ italic_u italic_v end_CELL end_ROW start_ROW start_CELL ( italic_E + italic_p ) italic_u end_CELL end_ROW end_ARG ] + divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG [ start_ARG start_ROW start_CELL italic_ρ italic_v end_CELL end_ROW start_ROW start_CELL italic_ρ italic_u italic_v end_CELL end_ROW start_ROW start_CELL italic_ρ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_p end_CELL end_ROW start_ROW start_CELL ( italic_E + italic_p ) italic_v end_CELL end_ROW end_ARG ] = 0 , (6.14)

where u𝑢uitalic_u is the x𝑥xitalic_x-velocity, v𝑣vitalic_v is the y𝑦yitalic_y-velocity, ρ𝜌\rhoitalic_ρ is the fluid density, p𝑝pitalic_p is the pressure, and E𝐸Eitalic_E is the energy. The system is closed by the state equation

p=(γ1)(ρE12ρ(u2+v2)),𝑝𝛾1𝜌𝐸12𝜌superscript𝑢2superscript𝑣2\displaystyle p=(\gamma-1)\left(\rho E-\frac{1}{2}\rho(u^{2}+v^{2})\right),italic_p = ( italic_γ - 1 ) ( italic_ρ italic_E - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_ρ ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) , (6.15)

where γ=1.4𝛾1.4\gamma=1.4italic_γ = 1.4 is the specific heat ratio. The spatial domain is the unit square Ω=(0,1)×(0,1)Ω0101\Omega=(0,1)\times(0,1)roman_Ω = ( 0 , 1 ) × ( 0 , 1 ) with homogeneous Neumann boundary conditions on each side, and the time domain is (0,0.8)00.8(0,0.8)( 0 , 0.8 ).

The initial condition is given by a classical Riemann problem as follows. The spatial domain is divided into four quadrants with a vertical dividing line at x=0.8𝑥0.8x=0.8italic_x = 0.8 and a horizontal dividing line at y=0.8𝑦0.8y=0.8italic_y = 0.8. The initial pressure is set to pBL=0.029subscript𝑝𝐵𝐿0.029p_{BL}=0.029italic_p start_POSTSUBSCRIPT italic_B italic_L end_POSTSUBSCRIPT = 0.029 in the bottom left quadrant; in the top right quadrant, the initial velocities are fixed at uTR=vTR=0subscript𝑢𝑇𝑅subscript𝑣𝑇𝑅0u_{TR}=v_{TR}=0italic_u start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 0, and the initial density is ρTR=1.5subscript𝜌𝑇𝑅1.5\rho_{TR}=1.5italic_ρ start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 1.5. We parameterize the initial condition by setting the upper-right quadrant pressure to pTR{0.5,0.75,1.0,1.25,1.5}subscript𝑝𝑇𝑅0.50.751.01.251.5p_{TR}\in\left\{0.5,0.75,1.0,1.25,1.5\right\}italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT ∈ { 0.5 , 0.75 , 1.0 , 1.25 , 1.5 } and compute remaining quantities following the relations in [53, Configuration 3]. For testing, we consider the initial upper-right quadrant pressure to p¯TR=1.125subscript¯𝑝𝑇𝑅1.125\bar{p}_{TR}=1.125over¯ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 1.125. In every case, the discontinuities of the initial condition propagate through the domain, a highly challenging scenario for projection-based model reduction.

Refer to caption
Refer to caption
Refer to caption
(a) Training, pTR=0.5subscript𝑝𝑇𝑅0.5p_{TR}=0.5italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 0.5
Refer to caption
Refer to caption
Refer to caption
(b) Training, pTR=1.5subscript𝑝𝑇𝑅1.5p_{TR}=1.5italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 1.5
Refer to caption
Refer to caption
Refer to caption
(c) Testing, pTR=1.125subscript𝑝𝑇𝑅1.125p_{TR}=1.125italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT = 1.125
Figure 8: Pressure snapshots for the 2D Euler equations corresponding to different initial values of pTRsubscript𝑝𝑇𝑅p_{TR}italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT.

We collect FOM snapshots using the open-source Python library pressio-demoapps111pressio.github.io/pressio-demoapps to simulate eq. 6.14, which uses a cell-centered finite volume scheme. For this example, we use a 256×256256256256\times 256256 × 256 uniform Cartesian mesh, resulting in a FOM with state dimension nq=256×256×4=262,144formulae-sequencesubscript𝑛𝑞2562564262144n_{q}=256\times 256\times 4=262,144italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = 256 × 256 × 4 = 262 , 144, and a Weno5 scheme for inviscid flux reconstruction. The FOM time stepping is done using pressio-demoapps’ SSP3 scheme for times t(0,0.8)𝑡00.8t\in(0,0.8)italic_t ∈ ( 0 , 0.8 ) with time step Δt=0.001Δ𝑡0.001\Delta t=0.001roman_Δ italic_t = 0.001, while the ROM is integrated with BDF time stepping. The first 2000200020002000 normalized POD singular values are plotted in Figure 9; the slow decay indicates the high difficulty of the problem for POD-based methods.

Refer to caption
Figure 9: First 2000200020002000 normalized singular values σk/σ1subscript𝜎𝑘subscript𝜎1\sigma_{k}/\sigma_{1}italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT / italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for the 2D Euler example.

Before computing ROMs, the FOM state variables are first transformed via the map

[ρρuρvρE][uvpζ],maps-tomatrix𝜌𝜌𝑢𝜌𝑣𝜌𝐸matrix𝑢𝑣𝑝𝜁\displaystyle\begin{bmatrix}\rho\\ \rho u\\ \rho v\\ \rho E\end{bmatrix}\mapsto\begin{bmatrix}u\\ v\\ p\\ \zeta\end{bmatrix},[ start_ARG start_ROW start_CELL italic_ρ end_CELL end_ROW start_ROW start_CELL italic_ρ italic_u end_CELL end_ROW start_ROW start_CELL italic_ρ italic_v end_CELL end_ROW start_ROW start_CELL italic_ρ italic_E end_CELL end_ROW end_ARG ] ↦ [ start_ARG start_ROW start_CELL italic_u end_CELL end_ROW start_ROW start_CELL italic_v end_CELL end_ROW start_ROW start_CELL italic_p end_CELL end_ROW start_ROW start_CELL italic_ζ end_CELL end_ROW end_ARG ] , (6.16)

where ζ=1/ρ𝜁1𝜌\zeta=1/\rhoitalic_ζ = 1 / italic_ρ is the specific volume. A discretized FOM using the specific volume formulation is purely quadratic,

ddt𝐪(t)=𝐇[𝐪(t)𝐪(t)],𝐪(0)=𝐪0(pTR).formulae-sequencedd𝑡𝐪𝑡𝐇delimited-[]tensor-product𝐪𝑡𝐪𝑡𝐪0subscript𝐪0subscript𝑝𝑇𝑅\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{H}[\mathbf{q}% (t)\otimes\mathbf{q}(t)],\qquad\mathbf{q}(0)=\mathbf{q}_{0}(p_{TR}).divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_H [ bold_q ( italic_t ) ⊗ bold_q ( italic_t ) ] , bold_q ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_p start_POSTSUBSCRIPT italic_T italic_R end_POSTSUBSCRIPT ) . (6.17)

This FOM is not formed explicitly, but it motivates an appropriate structure for feature map Kernel ROMs using POD or QM. In both cases, we set 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG to the average training snapshot and apply the kernel input normalization from Remark 2.1, leading to a POD ROM structure

ddt𝐪^(t)=𝐜^+𝐀^𝐪^(t)+𝐇^[𝐪^(t)𝐪^(t)],dd𝑡^𝐪𝑡^𝐜^𝐀^𝐪𝑡^𝐇delimited-[]tensor-product^𝐪𝑡^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{c}% }+\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+\hat{\mathbf{H}}[\hat{\mathbf{q}}(t)% \otimes\hat{\mathbf{q}}(t)],divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_c end_ARG + over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over^ start_ARG bold_H end_ARG [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] , (6.18)

whereas the QM ROMs have the quartic form

ddt𝐪^(t)=𝐜^+𝐀^𝐪^(t)+𝐇^2[𝐪^(t)𝐪^(t)]+𝐇^3[𝐪^(t)𝐪^(t)𝐪^(t)]+𝐇^4[𝐪^(t)𝐪^(t)𝐪^(t)𝐪^(t)].dd𝑡^𝐪𝑡^𝐜^𝐀^𝐪𝑡subscript^𝐇2delimited-[]tensor-product^𝐪𝑡^𝐪𝑡subscript^𝐇3delimited-[]tensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡subscript^𝐇4delimited-[]tensor-producttensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)=\hat{\mathbf{c}% }+\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+\hat{\mathbf{H}}_{2}[\hat{\mathbf{q}}(t)% \otimes\hat{\mathbf{q}}(t)]+\hat{\mathbf{H}}_{3}[\hat{\mathbf{q}}(t)\otimes% \hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)]+\hat{\mathbf{H}}_{4}[\hat{% \mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat{% \mathbf{q}}(t)].divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) = over^ start_ARG bold_c end_ARG + over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] . (6.19)

Since we use pressio-demoapps to collect FOM data, this example only considers the purely non-intrusive cases. That is, we do not compute intrusive ROMs for this problem and do not evaluate the a posteriori error bound as in the previous examples.

The POD and QM OpInf ROMs are constructed to have the same structure as eq. 6.18 and eq. 6.19, respectively. Notice that this is the same structure as for Burgers’ equation. Consequently, the feature map Kernel ROMs use the same feature maps ϕbold-italic-ϕ{\boldsymbol{\phi}}bold_italic_ϕ and weighting matrices 𝐆𝐆\mathbf{G}bold_G as in Table 3. As in both previous examples, the RBF Kernel ROMs use a Gaussian RBF kernel with fixed shape parameter ϵ=101italic-ϵsuperscript101\epsilon=10^{-1}italic_ϵ = 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. The hybrid Kernel ROMs use the sum of the kernel induced by the POD feature map from Table 3 with weighting coefficient cϕ=1subscript𝑐italic-ϕ1c_{\phi}=1italic_c start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = 1 and the same Gaussian RBF kernel with ϵ=0.1italic-ϵ0.1\epsilon=0.1italic_ϵ = 0.1 and weighting coefficient cψ=103subscript𝑐𝜓superscript103c_{\psi}=10^{-3}italic_c start_POSTSUBSCRIPT italic_ψ end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, resulting in a right-hand side of the form eq. 6.11. The error metric that we consider is the relative Lsuperscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT norm

𝐞(𝐪,𝐪^)=maxk𝐪(tk)𝐠(𝐪^(tk))1maxk𝐪(tk)1,𝐞𝐪^𝐪subscript𝑘subscriptnorm𝐪subscript𝑡𝑘𝐠^𝐪subscript𝑡𝑘1subscript𝑘subscriptnorm𝐪subscript𝑡𝑘1\displaystyle\mathbf{e}(\mathbf{q},\hat{\mathbf{q}})=\frac{\max_{k}\;\left\|% \mathbf{q}(t_{k})-\mathbf{g}(\hat{\mathbf{q}}(t_{k}))\right\|_{1}}{\max_{k}\;% \left\|\mathbf{q}(t_{k})\right\|_{1}},bold_e ( bold_q , over^ start_ARG bold_q end_ARG ) = divide start_ARG roman_max start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ bold_q ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - bold_g ( over^ start_ARG bold_q end_ARG ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG roman_max start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ bold_q ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ∥ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG , (6.20)

The L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT norm is more appropriate than L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for this problem due to the discontinuities in the solution.

We plot the error eq. 6.20 versus the reduced dimension r𝑟ritalic_r for the POD OpInf, feature map Kernel, RBF Kernel, and hybrid Kernel ROMs in Figure 10. For r=5,10,15𝑟51015r=5,10,15italic_r = 5 , 10 , 15, each of the ROMs obtain nearly identical performance. For r>15𝑟15r>15italic_r > 15, the projection error and the Kernel ROM errors plateau, with the Kernel ROMs yielding a <2%absentpercent2<2\%< 2 % difference in error compared to the projection error. The Hybrid and FM Kernel ROMs have nearly identical errors, while the RBF yields slightly different but very similar errors. The OpInf ROM increases slightly in error for r>15𝑟15r>15italic_r > 15, yet still obtains errors within a few percent of the projection error. We note that the plateauing of the ROM and projection errors for the tested ROM sizes is expected since the singular value decay is slow, as shown in Figure 9.

Refer to caption
Figure 10: Relative errors for several non-intrusive POD ROMs for the Euler–Riemann problem eq. 6.14.

We omit a similar comparison for the QM ROMs for this problem because the resulting ROMs are highly dependent on the QM regularization ρ𝜌\rhoitalic_ρ, and require very large values of ρ𝜌\rhoitalic_ρ to obtain a stable ROM. To illustrate this, we compute QM Kernel FM ROMs for r=10,20𝑟1020r=10,20italic_r = 10 , 20 for QM regularizations ρ{100,101,,1012}𝜌superscript100superscript101superscript1012\rho\in\left\{10^{0},10^{1},\dots,10^{12}\right\}italic_ρ ∈ { 10 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , … , 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT } and plot the resulting errors, see Figure 11. For r=10𝑟10r=10italic_r = 10, we observe that the QM Kernel ROM errors are very large for ρ<1010𝜌superscript1010\rho<10^{10}italic_ρ < 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT, whereas the corresponding QM projection errors are relatively small. The QM ROM errors do not approach the QM projection errors until ρ=1011𝜌superscript1011\rho=10^{11}italic_ρ = 10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT, where a slightly better error compared to POD is achieved. For r=20𝑟20r=20italic_r = 20, the QM ROMs for ρ<108𝜌superscript108\rho<10^{8}italic_ρ < 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT are unstable and do not finish the time integration, while for ρ=108,109,1010𝜌superscript108superscript109superscript1010\rho=10^{8},10^{9},10^{10}italic_ρ = 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT, the QM ROM errors still exceed the POD errors. The QM ROMs for ρ=1011,1012𝜌superscript1011superscript1012\rho=10^{11},10^{12}italic_ρ = 10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT obtain yield the best errors, but because the QM regularization ρ𝜌\rhoitalic_ρ is so large, the resulting ROM errors are no better than POD.

Refer to caption
Figure 11: QM regularization ρ𝜌\rhoitalic_ρ versus relative Lsuperscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT error.

7 Conclusion

This paper develops a novel non-intrusive model reduction technique grounded in regularized kernel interpolation. While previous approaches approximate the ROM dynamics by solving a data-driven polynomial regression problem, our approach yields an optimal approximant to the ROM dynamics from an RKHS, which is determined by the choice of kernel. In particular, using kernels induced by feature maps allows one to imbue interpretable structure into the resulting ROM. Furthermore, using an RBF kernel or a hybrid approach using the sum of a feature map and an RBF kernel allows one to compute effective non-intrusive ROMs that incorporate no structure or partial structure. The hybrid approach also provides a natural way of incorporating closure terms into our ROM formulation, and this approach was demonstrated to be effective in each of the numerical examples. Since the approximant lives in an RKHS, we can leverage the pointwise error bound from Theorem 2.2, a standard result from RKHS theory, as well as standard intrusive ROM error estimates to derive an a posteriori error estimate for our Kernel ROMs in Theorem 5.1. This error estimate, as well as the added flexibility afforded by arbitrary choices of kernel, are key innovations of our approach.

Future work will focus on expanding the applicability and efficiency of Kernel ROMs. In particular, we will extend our approach to problems where the FOM right-hand side 𝐟𝐟\mathbf{f}bold_f is parametrized, which is the case in many engineering applications of interest. Second, we will implement a greedy sampling procedure to build a minimal training set for the kernel interpolants. This is particularly relevant when using an RBF interpolant, since the computation cost of evaluating the RBF interpolant is proportional to the amount of training data whenever the kernel is not entirely prescribed by feature maps. Third, we will develop a method for non-intrusively approximating the a posteriori error bound in Theorem 5.1. As mentioned in Section 6, evaluating the bound eq. 5.5 requires access to the FOM right-hand side 𝐟𝐟\mathbf{f}bold_f, which we assume that we cannot access in the fully non-intrusive setting. Therefore, in future work, it will be necessary to develop an accurate estimator for the quantities in eq. 5.6.

Acknowledgements

S.A.M. was supported in part by the John von Neumann postdoctoral fellowship, a position at Sandia National Laboratories sponsored by the Applied Mathematics Program of the U.S. Department of Energy Office of Advanced Scientific Computing Research. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the U.S. Government.

Appendix A Quadratic systems with QM approximations

This appendix considers a linear-quadratic FOM,

ddt𝐪(t)=𝐟(𝐪(t))𝐀𝐪(t)+𝐇[𝐪(t)𝐪(t)],dd𝑡𝐪𝑡𝐟𝐪𝑡𝐀𝐪𝑡𝐇delimited-[]tensor-product𝐪𝑡𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{f}(\mathbf{q}% (t))\coloneqq\mathbf{A}\mathbf{q}(t)+\mathbf{H}[\mathbf{q}(t)\otimes\mathbf{q}% (t)],divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_f ( bold_q ( italic_t ) ) ≔ bold_Aq ( italic_t ) + bold_H [ bold_q ( italic_t ) ⊗ bold_q ( italic_t ) ] , (3.14)

and derives the structure of the corresponding intrusive projection-based ROM with a QM approximation,

𝐠(𝐪~)=𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~],𝐠~𝐪¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle\mathbf{g}(\tilde{\mathbf{q}})=\bar{\mathbf{q}}+\mathbf{V}\tilde{% \mathbf{q}}+\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}],bold_g ( over~ start_ARG bold_q end_ARG ) = over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] , (3.5)

for nonzero 𝐪¯nq\bar{\mathbf{q}}\in{}^{n_{q}}over¯ start_ARG bold_q end_ARG ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT and 𝐖nq×r2\mathbf{W}\in{}^{n_{q}\times r^{2}}bold_W ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT. Specifically, we show that a nonzero reference vector 𝐪¯¯𝐪\bar{\mathbf{q}}over¯ start_ARG bold_q end_ARG causes a constant term to appear in the ROM dynamics.

Using the product rule (𝐗𝐘)(𝐙𝐔)=(𝐗𝐙)(𝐘𝐔)tensor-product𝐗𝐘tensor-product𝐙𝐔tensor-product𝐗𝐙𝐘𝐔(\mathbf{X}\otimes\mathbf{Y})(\mathbf{Z}\otimes\mathbf{U})=(\mathbf{X}\mathbf{% Z})\otimes(\mathbf{Y}\mathbf{U})( bold_X ⊗ bold_Y ) ( bold_Z ⊗ bold_U ) = ( bold_XZ ) ⊗ ( bold_YU ), we have

𝐠(𝐪~)𝐠(𝐪~)tensor-product𝐠~𝐪𝐠~𝐪\displaystyle\mathbf{g}(\tilde{\mathbf{q}})\otimes\mathbf{g}(\tilde{\mathbf{q}})bold_g ( over~ start_ARG bold_q end_ARG ) ⊗ bold_g ( over~ start_ARG bold_q end_ARG ) =(𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~])(𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~])absenttensor-product¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle=\big{(}\bar{\mathbf{q}}+\mathbf{V}\tilde{\mathbf{q}}+\mathbf{W}[% \tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]\big{)}\otimes\big{(}\bar{\mathbf{% q}}+\mathbf{V}\tilde{\mathbf{q}}+\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{% \mathbf{q}}]\big{)}= ( over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) ⊗ ( over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] )
=𝐪¯𝐪¯+𝐪¯(𝐕𝐪~)+𝐪¯(𝐖[𝐪~𝐪~])absenttensor-product¯𝐪¯𝐪tensor-product¯𝐪𝐕~𝐪tensor-product¯𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle=\bar{\mathbf{q}}\otimes\bar{\mathbf{q}}+\bar{\mathbf{q}}\otimes(% \mathbf{V}\tilde{\mathbf{q}})+\bar{\mathbf{q}}\otimes(\mathbf{W}[\tilde{% \mathbf{q}}\otimes\tilde{\mathbf{q}}])= over¯ start_ARG bold_q end_ARG ⊗ over¯ start_ARG bold_q end_ARG + over¯ start_ARG bold_q end_ARG ⊗ ( bold_V over~ start_ARG bold_q end_ARG ) + over¯ start_ARG bold_q end_ARG ⊗ ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] )
+(𝐕𝐪~)𝐪¯+(𝐕𝐪~)(𝐕𝐪~)+(𝐕𝐪~)(𝐖[𝐪~𝐪~])tensor-product𝐕~𝐪¯𝐪tensor-product𝐕~𝐪𝐕~𝐪tensor-product𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle\qquad+(\mathbf{V}\tilde{\mathbf{q}})\otimes\bar{\mathbf{q}}+(% \mathbf{V}\tilde{\mathbf{q}})\otimes(\mathbf{V}\tilde{\mathbf{q}})+(\mathbf{V}% \tilde{\mathbf{q}})\otimes(\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{% q}}])+ ( bold_V over~ start_ARG bold_q end_ARG ) ⊗ over¯ start_ARG bold_q end_ARG + ( bold_V over~ start_ARG bold_q end_ARG ) ⊗ ( bold_V over~ start_ARG bold_q end_ARG ) + ( bold_V over~ start_ARG bold_q end_ARG ) ⊗ ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] )
+(𝐖[𝐪~𝐪~])𝐪¯+(𝐖[𝐪~𝐪~])(𝐕𝐪~)+(𝐖[𝐪~𝐪~])(𝐖[𝐪~𝐪~])tensor-product𝐖delimited-[]tensor-product~𝐪~𝐪¯𝐪tensor-product𝐖delimited-[]tensor-product~𝐪~𝐪𝐕~𝐪tensor-product𝐖delimited-[]tensor-product~𝐪~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle\qquad+(\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}])% \otimes\bar{\mathbf{q}}+(\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}% }])\otimes(\mathbf{V}\tilde{\mathbf{q}})+(\mathbf{W}[\tilde{\mathbf{q}}\otimes% \tilde{\mathbf{q}}])\otimes(\mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf% {q}}])+ ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) ⊗ over¯ start_ARG bold_q end_ARG + ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) ⊗ ( bold_V over~ start_ARG bold_q end_ARG ) + ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) ⊗ ( bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] )
=𝐪¯𝐪¯+(𝐪¯𝐕)𝐪~+(𝐪¯𝐖)[𝐪~𝐪~]absenttensor-product¯𝐪¯𝐪tensor-product¯𝐪𝐕~𝐪tensor-product¯𝐪𝐖delimited-[]tensor-product~𝐪~𝐪\displaystyle=\bar{\mathbf{q}}\otimes\bar{\mathbf{q}}+(\bar{\mathbf{q}}\otimes% \mathbf{V})\tilde{\mathbf{q}}+(\bar{\mathbf{q}}\otimes\mathbf{W})[\tilde{% \mathbf{q}}\otimes\tilde{\mathbf{q}}]= over¯ start_ARG bold_q end_ARG ⊗ over¯ start_ARG bold_q end_ARG + ( over¯ start_ARG bold_q end_ARG ⊗ bold_V ) over~ start_ARG bold_q end_ARG + ( over¯ start_ARG bold_q end_ARG ⊗ bold_W ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]
+(𝐕𝐪¯)𝐪~+(𝐕𝐕)[𝐪~𝐪~]+(𝐕𝐖)[𝐪~𝐪~𝐪~]tensor-product𝐕¯𝐪~𝐪tensor-product𝐕𝐕delimited-[]tensor-product~𝐪~𝐪tensor-product𝐕𝐖delimited-[]tensor-product~𝐪~𝐪~𝐪\displaystyle\qquad+(\mathbf{V}\otimes\bar{\mathbf{q}})\tilde{\mathbf{q}}+(% \mathbf{V}\otimes\mathbf{V})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]+(% \mathbf{V}\otimes\mathbf{W})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}% \otimes\tilde{\mathbf{q}}]+ ( bold_V ⊗ over¯ start_ARG bold_q end_ARG ) over~ start_ARG bold_q end_ARG + ( bold_V ⊗ bold_V ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] + ( bold_V ⊗ bold_W ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]
+(𝐖𝐪¯)[𝐪~𝐪~]+(𝐖𝐕)[𝐪~𝐪~𝐪~]+(𝐖𝐖)[𝐪~𝐪~𝐪~𝐪~]tensor-product𝐖¯𝐪delimited-[]tensor-product~𝐪~𝐪tensor-product𝐖𝐕delimited-[]tensor-product~𝐪~𝐪~𝐪tensor-product𝐖𝐖delimited-[]tensor-product~𝐪~𝐪~𝐪~𝐪\displaystyle\qquad+(\mathbf{W}\otimes\bar{\mathbf{q}})[\tilde{\mathbf{q}}% \otimes\tilde{\mathbf{q}}]+(\mathbf{W}\otimes\mathbf{V})[\tilde{\mathbf{q}}% \otimes\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]+(\mathbf{W}\otimes\mathbf{% W})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}% \otimes\tilde{\mathbf{q}}]+ ( bold_W ⊗ over¯ start_ARG bold_q end_ARG ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] + ( bold_W ⊗ bold_V ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] + ( bold_W ⊗ bold_W ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]
=𝐪¯𝐪¯+(𝐪¯𝐕+𝐕𝐪¯)𝐪~+(𝐪¯𝐖+𝐕𝐕+𝐖𝐪¯)[𝐪~𝐪~]absenttensor-product¯𝐪¯𝐪tensor-product¯𝐪𝐕tensor-product𝐕¯𝐪~𝐪tensor-product¯𝐪𝐖tensor-product𝐕𝐕tensor-product𝐖¯𝐪delimited-[]tensor-product~𝐪~𝐪\displaystyle=\bar{\mathbf{q}}\otimes\bar{\mathbf{q}}+(\bar{\mathbf{q}}\otimes% \mathbf{V}+\mathbf{V}\otimes\bar{\mathbf{q}})\tilde{\mathbf{q}}+(\bar{\mathbf{% q}}\otimes\mathbf{W}+\mathbf{V}\otimes\mathbf{V}+\mathbf{W}\otimes\bar{\mathbf% {q}})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]= over¯ start_ARG bold_q end_ARG ⊗ over¯ start_ARG bold_q end_ARG + ( over¯ start_ARG bold_q end_ARG ⊗ bold_V + bold_V ⊗ over¯ start_ARG bold_q end_ARG ) over~ start_ARG bold_q end_ARG + ( over¯ start_ARG bold_q end_ARG ⊗ bold_W + bold_V ⊗ bold_V + bold_W ⊗ over¯ start_ARG bold_q end_ARG ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]
+(𝐕𝐖+𝐖𝐕)[𝐪~𝐪~𝐪~]+(𝐖𝐖)[𝐪~𝐪~𝐪~𝐪~].tensor-product𝐕𝐖tensor-product𝐖𝐕delimited-[]tensor-product~𝐪~𝐪~𝐪tensor-product𝐖𝐖delimited-[]tensor-product~𝐪~𝐪~𝐪~𝐪\displaystyle\qquad+(\mathbf{V}\otimes\mathbf{W}+\mathbf{W}\otimes\mathbf{V})[% \tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]+(\mathbf% {W}\otimes\mathbf{W})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}\otimes\tilde% {\mathbf{q}}\otimes\tilde{\mathbf{q}}].+ ( bold_V ⊗ bold_W + bold_W ⊗ bold_V ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] + ( bold_W ⊗ bold_W ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] .

Therefore,

𝐟(𝐠(𝐪~))𝐟𝐠~𝐪\displaystyle\mathbf{f}(\mathbf{g}(\tilde{\mathbf{q}}))bold_f ( bold_g ( over~ start_ARG bold_q end_ARG ) ) =𝐀(𝐪¯+𝐕𝐪~+𝐖[𝐪~𝐪~])+𝐇[𝐠(𝐪~)𝐠(𝐪~)]absent𝐀¯𝐪𝐕~𝐪𝐖delimited-[]tensor-product~𝐪~𝐪𝐇delimited-[]tensor-product𝐠~𝐪𝐠~𝐪\displaystyle=\mathbf{A}\big{(}\bar{\mathbf{q}}+\mathbf{V}\tilde{\mathbf{q}}+% \mathbf{W}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]\big{)}+\mathbf{H}[% \mathbf{g}(\tilde{\mathbf{q}})\otimes\mathbf{g}(\tilde{\mathbf{q}})]= bold_A ( over¯ start_ARG bold_q end_ARG + bold_V over~ start_ARG bold_q end_ARG + bold_W [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ) + bold_H [ bold_g ( over~ start_ARG bold_q end_ARG ) ⊗ bold_g ( over~ start_ARG bold_q end_ARG ) ]
=𝐀𝐪¯+𝐇[𝐪¯𝐪¯]+(𝐀𝐕+𝐇(𝐪¯𝐕+𝐕𝐪¯))𝐪~absent𝐀¯𝐪𝐇delimited-[]tensor-product¯𝐪¯𝐪𝐀𝐕𝐇tensor-product¯𝐪𝐕tensor-product𝐕¯𝐪~𝐪\displaystyle=\mathbf{A}\bar{\mathbf{q}}+\mathbf{H}[\bar{\mathbf{q}}\otimes% \bar{\mathbf{q}}]+\big{(}\mathbf{A}\mathbf{V}+\mathbf{H}(\bar{\mathbf{q}}% \otimes\mathbf{V}+\mathbf{V}\otimes\bar{\mathbf{q}})\big{)}\tilde{\mathbf{q}}= bold_A over¯ start_ARG bold_q end_ARG + bold_H [ over¯ start_ARG bold_q end_ARG ⊗ over¯ start_ARG bold_q end_ARG ] + ( bold_AV + bold_H ( over¯ start_ARG bold_q end_ARG ⊗ bold_V + bold_V ⊗ over¯ start_ARG bold_q end_ARG ) ) over~ start_ARG bold_q end_ARG
+(𝐀𝐖+𝐇(𝐪¯𝐖+𝐕𝐕+𝐖𝐪¯))[𝐪~𝐪~]𝐀𝐖𝐇tensor-product¯𝐪𝐖tensor-product𝐕𝐕tensor-product𝐖¯𝐪delimited-[]tensor-product~𝐪~𝐪\displaystyle\qquad+\big{(}\mathbf{A}\mathbf{W}+\mathbf{H}(\bar{\mathbf{q}}% \otimes\mathbf{W}+\mathbf{V}\otimes\mathbf{V}+\mathbf{W}\otimes\bar{\mathbf{q}% })\big{)}[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}]+ ( bold_AW + bold_H ( over¯ start_ARG bold_q end_ARG ⊗ bold_W + bold_V ⊗ bold_V + bold_W ⊗ over¯ start_ARG bold_q end_ARG ) ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ]
+𝐇(𝐕𝐖+𝐖𝐕)[𝐪~𝐪~𝐪~]+𝐇(𝐖𝐖)[𝐪~𝐪~𝐪~𝐪~],𝐇tensor-product𝐕𝐖tensor-product𝐖𝐕delimited-[]tensor-product~𝐪~𝐪~𝐪𝐇tensor-product𝐖𝐖delimited-[]tensor-product~𝐪~𝐪~𝐪~𝐪\displaystyle\qquad+\mathbf{H}(\mathbf{V}\otimes\mathbf{W}+\mathbf{W}\otimes% \mathbf{V})[\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q% }}]+\mathbf{H}(\mathbf{W}\otimes\mathbf{W})[\tilde{\mathbf{q}}\otimes\tilde{% \mathbf{q}}\otimes\tilde{\mathbf{q}}\otimes\tilde{\mathbf{q}}],+ bold_H ( bold_V ⊗ bold_W + bold_W ⊗ bold_V ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] + bold_H ( bold_W ⊗ bold_W ) [ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ⊗ over~ start_ARG bold_q end_ARG ] ,

so that the intrusive projection-based ROM eq. 3.8 can be written as

ddt𝐪~(t)=𝐕𝖳𝐟(𝐠(𝐪~(t)))=𝐜~+𝐀~𝐪~(t)+𝐇~2[𝐪~(t)𝐪~(t)]+𝐇~3[𝐪~(t)𝐪~(t)𝐪~(t)]+𝐇~4[𝐪~(t)𝐪~(t)𝐪~(t)𝐪~(t)],dd𝑡~𝐪𝑡absentsuperscript𝐕𝖳𝐟𝐠~𝐪𝑡missing-subexpressionabsent~𝐜~𝐀~𝐪𝑡subscript~𝐇2delimited-[]tensor-product~𝐪𝑡~𝐪𝑡subscript~𝐇3delimited-[]tensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡subscript~𝐇4delimited-[]tensor-producttensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡~𝐪𝑡\displaystyle\begin{aligned} \frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(% t)&=\mathbf{V}^{\mathsf{T}}\mathbf{f}(\mathbf{g}(\tilde{\mathbf{q}}(t)))\\ &=\tilde{\mathbf{c}}+\tilde{\mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}% }_{2}[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]+\tilde{\mathbf{H}}_{3% }[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t% )]+\tilde{\mathbf{H}}_{4}[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)% \otimes\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)],\end{aligned}start_ROW start_CELL divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_f ( bold_g ( over~ start_ARG bold_q end_ARG ( italic_t ) ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = over~ start_ARG bold_c end_ARG + over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , end_CELL end_ROW (A.1a)
where
𝐜~=𝐕𝖳(𝐀𝐪¯+𝐇[𝐪¯𝐪¯]),r𝐀~=𝐕𝖳𝐀𝐕+𝐕𝖳𝐇(𝐪¯𝐕+𝐕𝐪¯),r×r𝐇~2=𝐕𝖳𝐀𝐖+𝐕𝖳𝐇(𝐪¯𝐖+𝐕𝐕+𝐖𝐪¯),r×r2𝐇~3=𝐕𝖳𝐇(𝐕𝐖+𝐖𝐕),r×r3𝐇~4=𝐕𝖳𝐇(𝐖𝐖).r×r4\displaystyle\begin{aligned} \tilde{\mathbf{c}}&=\mathbf{V}^{\mathsf{T}}(% \mathbf{A}\bar{\mathbf{q}}+\mathbf{H}[\bar{\mathbf{q}}\otimes\bar{\mathbf{q}}]% )\in{}^{r},\\ \tilde{\mathbf{A}}&=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}+\mathbf{V}^{% \mathsf{T}}\mathbf{H}(\bar{\mathbf{q}}\otimes\mathbf{V}+\mathbf{V}\otimes\bar{% \mathbf{q}})\in{}^{r\times r},\\ \tilde{\mathbf{H}}_{2}&=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{W}+\mathbf{V}% ^{\mathsf{T}}\mathbf{H}(\bar{\mathbf{q}}\otimes\mathbf{W}+\mathbf{V}\otimes% \mathbf{V}+\mathbf{W}\otimes\bar{\mathbf{q}})\in{}^{r\times r^{2}},\\ \tilde{\mathbf{H}}_{3}&=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{V}\otimes% \mathbf{W}+\mathbf{W}\otimes\mathbf{V})\in{}^{r\times r^{3}},\\ \tilde{\mathbf{H}}_{4}&=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{W}\otimes% \mathbf{W})\in{}^{r\times r^{4}}.\end{aligned}start_ROW start_CELL over~ start_ARG bold_c end_ARG end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ( bold_A over¯ start_ARG bold_q end_ARG + bold_H [ over¯ start_ARG bold_q end_ARG ⊗ over¯ start_ARG bold_q end_ARG ] ) ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL over~ start_ARG bold_A end_ARG end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV + bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( over¯ start_ARG bold_q end_ARG ⊗ bold_V + bold_V ⊗ over¯ start_ARG bold_q end_ARG ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW + bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( over¯ start_ARG bold_q end_ARG ⊗ bold_W + bold_V ⊗ bold_V + bold_W ⊗ over¯ start_ARG bold_q end_ARG ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_V ⊗ bold_W + bold_W ⊗ bold_V ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_CELL start_CELL = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_W ⊗ bold_W ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT . end_CELL end_ROW (A.1b)

The quartic polynomial structure of eq. A.1 also arises when 𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\bf 0over¯ start_ARG bold_q end_ARG = bold_0 but a Kernel ROM is constructed with the input scaling preprocessing step of Remark 2.1. In that case, the matrices in eq. A.1 reduce to

𝐀~~𝐀\displaystyle\tilde{\mathbf{A}}over~ start_ARG bold_A end_ARG =𝐕𝖳𝐀𝐕,absentsuperscript𝐕𝖳𝐀𝐕\displaystyle=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V},= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV , 𝐇~2subscript~𝐇2\displaystyle\tilde{\mathbf{H}}_{2}over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =𝐕𝖳𝐀𝐖+𝐕𝖳𝐇(𝐕𝐕),absentsuperscript𝐕𝖳𝐀𝐖superscript𝐕𝖳𝐇tensor-product𝐕𝐕\displaystyle=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{W}+\mathbf{V}^{\mathsf{% T}}\mathbf{H}(\mathbf{V}\otimes\mathbf{V}),= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW + bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_V ⊗ bold_V ) ,
𝐇~3subscript~𝐇3\displaystyle\tilde{\mathbf{H}}_{3}over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT =𝐕𝖳𝐇(𝐕𝐖+𝐖𝐕),absentsuperscript𝐕𝖳𝐇tensor-product𝐕𝐖tensor-product𝐖𝐕\displaystyle=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{V}\otimes\mathbf{W}+% \mathbf{W}\otimes\mathbf{V}),= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_V ⊗ bold_W + bold_W ⊗ bold_V ) , 𝐇~4subscript~𝐇4\displaystyle\tilde{\mathbf{H}}_{4}over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT =𝐕𝖳𝐇(𝐖𝐖),absentsuperscript𝐕𝖳𝐇tensor-product𝐖𝐖\displaystyle=\mathbf{V}^{\mathsf{T}}\mathbf{H}(\mathbf{W}\otimes\mathbf{W}),= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_H ( bold_W ⊗ bold_W ) ,

with 𝐜~=𝟎~𝐜0\tilde{\mathbf{c}}=\bf 0over~ start_ARG bold_c end_ARG = bold_0. However, the Kernel ROM targets a shifted and scaled reduced state 𝐪^(t)=𝚺1(𝐪~(t)𝐱¯)^𝐪𝑡superscript𝚺1~𝐪𝑡¯𝐱\hat{\mathbf{q}}(t)={\boldsymbol{\Sigma}}^{-1}(\tilde{\mathbf{q}}(t)-\bar{% \mathbf{x}})over^ start_ARG bold_q end_ARG ( italic_t ) = bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_q end_ARG ( italic_t ) - over¯ start_ARG bold_x end_ARG ) for some 𝚺r×r{\boldsymbol{\Sigma}}\in{}^{r\times r}bold_Σ ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT and 𝐱¯r\bar{\mathbf{x}}\in{}^{r}over¯ start_ARG bold_x end_ARG ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT, which evolves according to

ddt𝐪^(t)dd𝑡^𝐪𝑡\displaystyle\frac{\textrm{d}}{\textrm{d}t}\hat{\mathbf{q}}(t)divide start_ARG d end_ARG start_ARG d italic_t end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) =ddt[𝚺1𝐪~(t)𝚺1𝐱¯]absentdd𝑡delimited-[]superscript𝚺1~𝐪𝑡superscript𝚺1¯𝐱\displaystyle=\frac{\textrm{d}}{\textrm{d}t}\left[{\boldsymbol{\Sigma}}^{-1}% \tilde{\mathbf{q}}(t)-{\boldsymbol{\Sigma}}^{-1}\bar{\mathbf{x}}\right]= divide start_ARG d end_ARG start_ARG d italic_t end_ARG [ bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT over~ start_ARG bold_q end_ARG ( italic_t ) - bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT over¯ start_ARG bold_x end_ARG ]
=𝚺1(𝐀~𝐪~(t)+𝐇~2[𝐪~(t)𝐪~(t)]+𝐇~3[𝐪~(t)𝐪~(t)𝐪~(t)]+𝐇~4[𝐪~(t)𝐪~(t)𝐪~(t)𝐪~(t)])absentsuperscript𝚺1~𝐀~𝐪𝑡subscript~𝐇2delimited-[]tensor-product~𝐪𝑡~𝐪𝑡subscript~𝐇3delimited-[]tensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡subscript~𝐇4delimited-[]tensor-producttensor-producttensor-product~𝐪𝑡~𝐪𝑡~𝐪𝑡~𝐪𝑡\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{A}}\tilde{% \mathbf{q}}(t)+\tilde{\mathbf{H}}_{2}[\tilde{\mathbf{q}}(t)\otimes\tilde{% \mathbf{q}}(t)]+\tilde{\mathbf{H}}_{3}[\tilde{\mathbf{q}}(t)\otimes\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]+\tilde{\mathbf{H}}_{4}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\otimes% \tilde{\mathbf{q}}(t)]\big{)}= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] )
=𝚺1(𝐀~(𝚺𝐪^(t)+𝐱¯)+𝐇~2[(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)]\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{A}}({\boldsymbol% {\Sigma}}\hat{\mathbf{q}}(t)+\bar{\mathbf{x}})+\tilde{\mathbf{H}}_{2}[({% \boldsymbol{\Sigma}}\hat{\mathbf{q}}(t)+\bar{\mathbf{x}})\otimes({\boldsymbol{% \Sigma}}\hat{\mathbf{q}}(t)+\bar{\mathbf{x}})]= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_A end_ARG ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ]
+𝐇~3[(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)]subscript~𝐇3delimited-[]tensor-product𝚺^𝐪𝑡¯𝐱𝚺^𝐪𝑡¯𝐱𝚺^𝐪𝑡¯𝐱\displaystyle\qquad\qquad+\tilde{\mathbf{H}}_{3}[({\boldsymbol{\Sigma}}\hat{% \mathbf{q}}(t)+\bar{\mathbf{x}})\otimes({\boldsymbol{\Sigma}}\hat{\mathbf{q}}(% t)+\bar{\mathbf{x}})\otimes({\boldsymbol{\Sigma}}\hat{\mathbf{q}}(t)+\bar{% \mathbf{x}})]+ over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ]
+𝐇~4[(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)(𝚺𝐪^(t)+𝐱¯)])\displaystyle\qquad\qquad+\tilde{\mathbf{H}}_{4}[({\boldsymbol{\Sigma}}\hat{% \mathbf{q}}(t)+\bar{\mathbf{x}})\otimes({\boldsymbol{\Sigma}}\hat{\mathbf{q}}(% t)+\bar{\mathbf{x}})\otimes({\boldsymbol{\Sigma}}\hat{\mathbf{q}}(t)+\bar{% \mathbf{x}})\otimes({\boldsymbol{\Sigma}}\hat{\mathbf{q}}(t)+\bar{\mathbf{x}})% ]\big{)}+ over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ⊗ ( bold_Σ over^ start_ARG bold_q end_ARG ( italic_t ) + over¯ start_ARG bold_x end_ARG ) ] )
=𝐜^+𝐀^𝐪^(t)+𝐇^2[𝐪^(t)𝐪^(t)]+𝐇^3[𝐪^(t)𝐪^(t)𝐪^(t)]+𝐇^4[𝐪^(t)𝐪^(t)𝐪^(t)𝐪^(t)],absent^𝐜^𝐀^𝐪𝑡subscript^𝐇2delimited-[]tensor-product^𝐪𝑡^𝐪𝑡subscript^𝐇3delimited-[]tensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡subscript^𝐇4delimited-[]tensor-producttensor-producttensor-product^𝐪𝑡^𝐪𝑡^𝐪𝑡^𝐪𝑡\displaystyle=\hat{\mathbf{c}}+\hat{\mathbf{A}}\hat{\mathbf{q}}(t)+\hat{% \mathbf{H}}_{2}[\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)]+\hat{\mathbf{H}% }_{3}[\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)]% +\hat{\mathbf{H}}_{4}[\hat{\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)\otimes\hat% {\mathbf{q}}(t)\otimes\hat{\mathbf{q}}(t)],= over^ start_ARG bold_c end_ARG + over^ start_ARG bold_A end_ARG over^ start_ARG bold_q end_ARG ( italic_t ) + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] + over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ⊗ over^ start_ARG bold_q end_ARG ( italic_t ) ] ,

where

𝐜^^𝐜\displaystyle\hat{\mathbf{c}}over^ start_ARG bold_c end_ARG =𝚺1(𝐀~𝐱¯+𝐇~2[𝐱¯𝐱¯]+𝐇~3[𝐱¯𝐱¯𝐱¯]+𝐇~4[𝐱¯𝐱¯𝐱¯𝐱¯]),r\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{A}}\bar{\mathbf{% x}}+\tilde{\mathbf{H}}_{2}[\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}]+\tilde{% \mathbf{H}}_{3}[\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}% ]+\tilde{\mathbf{H}}_{4}[\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}\otimes\bar{% \mathbf{x}}\otimes\bar{\mathbf{x}}]\big{)}\in{}^{r},= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_A end_ARG over¯ start_ARG bold_x end_ARG + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT [ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ] + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT [ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ] ) ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT ,
𝐀^^𝐀\displaystyle\hat{\mathbf{A}}over^ start_ARG bold_A end_ARG =𝚺1(𝐀~𝚺+𝐇~2(𝚺𝐱¯+𝐱¯𝚺)+𝐇~3(𝚺𝐱¯𝐱¯+𝐱¯𝚺𝐱¯+𝐱¯𝐱¯𝚺)\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{A}}{\boldsymbol{% \Sigma}}+\tilde{\mathbf{H}}_{2}({\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}+% \bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}})+\tilde{\mathbf{H}}_{3}({% \boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}+\bar{% \mathbf{x}}\otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}+\bar{\mathbf{x}% }\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}})= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_A end_ARG bold_Σ + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ )
+𝐇~4(𝚺𝐱¯𝐱¯𝐱¯+𝐱¯𝚺𝐱¯𝐱¯+𝐱¯𝐱¯𝚺𝐱¯+𝐱¯𝐱¯𝐱¯𝚺))r×r,\displaystyle\qquad\qquad+\tilde{\mathbf{H}}_{4}({\boldsymbol{\Sigma}}\otimes% \bar{\mathbf{x}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}+\bar{\mathbf{x}% }\otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}+% \bar{\mathbf{x}}\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}\otimes\bar% {\mathbf{x}}+\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}% \otimes{\boldsymbol{\Sigma}})\big{)}\in{}^{r\times r},+ over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ) ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r end_FLOATSUPERSCRIPT ,
𝐇^2subscript^𝐇2\displaystyle\hat{\mathbf{H}}_{2}over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =𝚺1(𝐇~2(𝚺𝚺)+𝐇~3(𝚺𝚺𝐱¯+𝚺𝐱¯𝚺+𝐱¯𝚺𝚺)\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{H}}_{2}({% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}})+\tilde{\mathbf{H}}_{3}({% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}+{% \boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}+\bar{% \mathbf{x}}\otimes{\boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}})= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ) + over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ bold_Σ )
+𝐇~4(𝚺𝚺𝐱¯𝐱¯+𝚺𝐱¯𝚺𝐱¯+𝚺𝐱¯𝐱¯𝚺\displaystyle\qquad\qquad+\tilde{\mathbf{H}}_{4}({\boldsymbol{\Sigma}}\otimes{% \boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes\bar{\mathbf{x}}+{% \boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}\otimes% \bar{\mathbf{x}}+{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes\bar{% \mathbf{x}}\otimes{\boldsymbol{\Sigma}}+ over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG + bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ
+𝐱¯𝚺𝚺𝐱¯+𝐱¯𝚺𝐱¯𝚺+𝐱¯𝐱¯𝚺𝚺))r×r2,\displaystyle\qquad\qquad\qquad+\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}% \otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}+\bar{\mathbf{x}}\otimes{% \boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}+\bar{% \mathbf{x}}\otimes\bar{\mathbf{x}}\otimes{\boldsymbol{\Sigma}}\otimes{% \boldsymbol{\Sigma}})\big{)}\in{}^{r\times r^{2}},+ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ + over¯ start_ARG bold_x end_ARG ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ bold_Σ ) ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT ,
𝐇^3subscript^𝐇3\displaystyle\hat{\mathbf{H}}_{3}over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT =𝚺1(𝐇~3(𝚺𝚺𝚺)\displaystyle={\boldsymbol{\Sigma}}^{-1}\big{(}\tilde{\mathbf{H}}_{3}({% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}})= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ⊗ bold_Σ )
+𝐇~4(𝚺𝚺𝚺𝐱¯+𝚺𝚺𝐱¯𝚺+𝚺𝐱¯𝚺𝚺+𝐱¯𝚺𝚺𝚺))r×r3,\displaystyle\qquad\qquad+\tilde{\mathbf{H}}_{4}({\boldsymbol{\Sigma}}\otimes{% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}+{% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes% {\boldsymbol{\Sigma}}+{\boldsymbol{\Sigma}}\otimes\bar{\mathbf{x}}\otimes{% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}+\bar{\mathbf{x}}\otimes{% \boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}})% \big{)}\in{}^{r\times r^{3}},+ over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG + bold_Σ ⊗ bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ + bold_Σ ⊗ over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ bold_Σ + over¯ start_ARG bold_x end_ARG ⊗ bold_Σ ⊗ bold_Σ ⊗ bold_Σ ) ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT ,
𝐇^4subscript^𝐇4\displaystyle\hat{\mathbf{H}}_{4}over^ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT =𝚺1𝐇~4(𝚺𝚺𝚺𝚺).r×r4\displaystyle={\boldsymbol{\Sigma}}^{-1}\tilde{\mathbf{H}}_{4}({\boldsymbol{% \Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes{\boldsymbol{\Sigma}}\otimes{% \boldsymbol{\Sigma}})\in{}^{r\times r^{4}}.= bold_Σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT over~ start_ARG bold_H end_ARG start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( bold_Σ ⊗ bold_Σ ⊗ bold_Σ ⊗ bold_Σ ) ∈ start_FLOATSUPERSCRIPT italic_r × italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_FLOATSUPERSCRIPT .

The salient point is that none of these matrices need to be constructed explicitly when using a non-intrusive model reduction method: only the desired structure is needed to design the non-intrusive ROM.

Appendix B Stability for linear systems

The following stability result illustrates the importance of the regularization hyperparameter ρ0𝜌0\rho\geq 0italic_ρ ≥ 0 when solving the minimization problem eq. 3.12 for computing 𝐖𝐖\mathbf{W}bold_W. Applying the QM approach with reference state 𝐪¯=𝟎¯𝐪0\bar{\mathbf{q}}=\mathbf{0}over¯ start_ARG bold_q end_ARG = bold_0 to a linear FOM

ddt𝐪(t)=𝐀𝐪(t),𝐪(0)=𝐪0(𝝁),formulae-sequencedd𝑡𝐪𝑡𝐀𝐪𝑡𝐪0subscript𝐪0𝝁\displaystyle\frac{\textrm{d}}{\textrm{d}t}\mathbf{q}(t)=\mathbf{A}\mathbf{q}(% t),\qquad\mathbf{q}(0)=\mathbf{q}_{0}({\boldsymbol{\mu}}),divide start_ARG d end_ARG start_ARG d italic_t end_ARG bold_q ( italic_t ) = bold_Aq ( italic_t ) , bold_q ( 0 ) = bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (B.1)

results in a ROM with quadratic dynamics

ddt𝐪~(t)=𝐀~𝐪~(t)+𝐇~[𝐪~(t)𝐪~(t)],𝐪~(0)dd𝑡~𝐪𝑡~𝐀~𝐪𝑡~𝐇delimited-[]tensor-product~𝐪𝑡~𝐪𝑡~𝐪0\displaystyle\frac{\textrm{d}}{\textrm{d}t}\tilde{\mathbf{q}}(t)=\tilde{% \mathbf{A}}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{H}}[\tilde{\mathbf{q}}(t)% \otimes\tilde{\mathbf{q}}(t)],\qquad\tilde{\mathbf{q}}(0)divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) = over~ start_ARG bold_A end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_H end_ARG [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] , over~ start_ARG bold_q end_ARG ( 0 ) =𝐕𝖳𝐪0(𝝁),absentsuperscript𝐕𝖳subscript𝐪0𝝁\displaystyle=\mathbf{V}^{\mathsf{T}}\mathbf{q}_{0}({\boldsymbol{\mu}}),= bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_μ ) , (B.2)

where 𝐀~=𝐕𝖳𝐀𝐕~𝐀superscript𝐕𝖳𝐀𝐕\tilde{\mathbf{A}}=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}over~ start_ARG bold_A end_ARG = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV and 𝐇~=𝐕𝖳𝐀𝐖~𝐇superscript𝐕𝖳𝐀𝐖\tilde{\mathbf{H}}=\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{W}over~ start_ARG bold_H end_ARG = bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW. We then have a stability estimate for the ROM solution

Proposition B.1.

Let λ𝜆\lambdaitalic_λ denote the maximum eigenvalue of 𝐀sym=12(𝐀+𝐀𝖳)subscript𝐀𝑠𝑦𝑚12𝐀superscript𝐀𝖳\mathbf{A}_{sym}=\frac{1}{2}(\mathbf{A}+\mathbf{A}^{\mathsf{T}})bold_A start_POSTSUBSCRIPT italic_s italic_y italic_m end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( bold_A + bold_A start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT ) (the symmetric part of 𝐀𝐀\mathbf{A}bold_A). Then the following stability estimate for the QM ROM eq. B.2 holds for all t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ]:

𝐪~(t)2𝐀2𝐖20t𝐪~(s)𝐪~(s)2eλ(ts)𝑑s+eλt𝐕𝖳𝐪02.subscriptnorm~𝐪𝑡2subscriptnorm𝐀2subscriptnorm𝐖2superscriptsubscript0𝑡subscriptnormtensor-product~𝐪𝑠~𝐪𝑠2superscript𝑒𝜆𝑡𝑠differential-d𝑠superscript𝑒𝜆𝑡subscriptnormsuperscript𝐕𝖳subscript𝐪02\displaystyle\left\|\tilde{\mathbf{q}}(t)\right\|_{2}\leq\left\|\mathbf{A}% \right\|_{2}\left\|\mathbf{W}\right\|_{2}\int_{0}^{t}\|\tilde{\mathbf{q}}(s)% \otimes\tilde{\mathbf{q}}(s)\|_{2}e^{\lambda(t-s)}ds+e^{\lambda t}\left\|% \mathbf{V}^{\mathsf{T}}\mathbf{q}_{0}\right\|_{2}.∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ ∥ bold_A ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_s ) ⊗ over~ start_ARG bold_q end_ARG ( italic_s ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_λ ( italic_t - italic_s ) end_POSTSUPERSCRIPT italic_d italic_s + italic_e start_POSTSUPERSCRIPT italic_λ italic_t end_POSTSUPERSCRIPT ∥ bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT . (B.3)
Proof.

Observe that

𝐪~(t)𝖳ddt𝐪~(t)=𝐪~(t)𝖳𝐕𝖳𝐀𝐕𝐪~(t)+𝐪~(t)𝖳𝐕𝖳𝐀𝐖[𝐪~(t)𝐪~(t)]=𝐪~(t)𝖳𝐕𝖳𝐀sym𝐕𝐪~(t)+𝐪~(t)𝖳𝐕𝖳𝐀𝐖[𝐪~(t)𝐪~(t)]λ𝐕𝐪~(t)22+𝐀2𝐖2𝐕𝐪~(t)2𝐪~(t)𝐪~(t)2=λ𝐪~(t)22+𝐀2𝐖2𝐪~(t)2𝐪~(t)𝐪~(t)2,~𝐪superscript𝑡𝖳dd𝑡~𝐪𝑡absent~𝐪superscript𝑡𝖳superscript𝐕𝖳𝐀𝐕~𝐪𝑡~𝐪superscript𝑡𝖳superscript𝐕𝖳𝐀𝐖delimited-[]tensor-product~𝐪𝑡~𝐪𝑡missing-subexpressionabsent~𝐪superscript𝑡𝖳superscript𝐕𝖳subscript𝐀𝑠𝑦𝑚𝐕~𝐪𝑡~𝐪superscript𝑡𝖳superscript𝐕𝖳𝐀𝐖delimited-[]tensor-product~𝐪𝑡~𝐪𝑡missing-subexpressionabsent𝜆superscriptsubscriptnorm𝐕~𝐪𝑡22subscriptnorm𝐀2subscriptnorm𝐖2subscriptnorm𝐕~𝐪𝑡2subscriptnormtensor-product~𝐪𝑡~𝐪𝑡2missing-subexpressionabsent𝜆superscriptsubscriptnorm~𝐪𝑡22subscriptnorm𝐀2subscriptnorm𝐖2subscriptnorm~𝐪𝑡2subscriptnormtensor-product~𝐪𝑡~𝐪𝑡2\displaystyle\begin{aligned} \tilde{\mathbf{q}}(t)^{\mathsf{T}}\frac{\textrm{d% }}{\textrm{d}t}\tilde{\mathbf{q}}(t)&=\tilde{\mathbf{q}}(t)^{\mathsf{T}}% \mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}\tilde{\mathbf{q}}(t)+\tilde{% \mathbf{q}}(t)^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{W}[\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)]\\ &=\tilde{\mathbf{q}}(t)^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{A}_{sym}% \mathbf{V}\tilde{\mathbf{q}}(t)+\tilde{\mathbf{q}}(t)^{\mathsf{T}}\mathbf{V}^{% \mathsf{T}}\mathbf{A}\mathbf{W}[\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}% (t)]\\ &\leq\lambda\left\|\mathbf{V}\tilde{\mathbf{q}}(t)\right\|_{2}^{2}+\left\|% \mathbf{A}\right\|_{2}\left\|\mathbf{W}\right\|_{2}\left\|\mathbf{V}\tilde{% \mathbf{q}}(t)\right\|_{2}\|\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)% \|_{2}\\ &=\lambda\left\|\tilde{\mathbf{q}}(t)\right\|_{2}^{2}+\left\|\mathbf{A}\right% \|_{2}\left\|\mathbf{W}\right\|_{2}\left\|\tilde{\mathbf{q}}(t)\right\|_{2}\|% \tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\|_{2},\end{aligned}start_ROW start_CELL over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) end_CELL start_CELL = over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AV over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_A start_POSTSUBSCRIPT italic_s italic_y italic_m end_POSTSUBSCRIPT bold_V over~ start_ARG bold_q end_ARG ( italic_t ) + over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_V start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT bold_AW [ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ] end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ≤ italic_λ ∥ bold_V over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ bold_A ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_V over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_λ ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∥ bold_A ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , end_CELL end_ROW (B.4)

where the last line follows from the orthonormality of 𝐕𝐕\mathbf{V}bold_V. The bound eq. B.4 implies that

ddt𝐪~(t)2=𝐪~(t)𝖳ddt𝐪~(t)𝐪~(t)2λ𝐪~(t)2+𝐀2𝐖2𝐪~(t)𝐪~(t)2dd𝑡subscriptnorm~𝐪𝑡2~𝐪superscript𝑡𝖳dd𝑡~𝐪𝑡subscriptnorm~𝐪𝑡2𝜆subscriptnorm~𝐪𝑡2subscriptnorm𝐀2subscriptnorm𝐖2subscriptnormtensor-product~𝐪𝑡~𝐪𝑡2\displaystyle\frac{\textrm{d}}{\textrm{d}t}\left\|\tilde{\mathbf{q}}(t)\right% \|_{2}=\frac{\tilde{\mathbf{q}}(t)^{\mathsf{T}}\frac{\textrm{d}}{\textrm{d}t}% \tilde{\mathbf{q}}(t)}{\left\|\tilde{\mathbf{q}}(t)\right\|_{2}}\leq\lambda% \left\|\tilde{\mathbf{q}}(t)\right\|_{2}+\left\|\mathbf{A}\right\|_{2}\left\|% \mathbf{W}\right\|_{2}\|\tilde{\mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\|_{2}divide start_ARG d end_ARG start_ARG d italic_t end_ARG ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = divide start_ARG over~ start_ARG bold_q end_ARG ( italic_t ) start_POSTSUPERSCRIPT sansserif_T end_POSTSUPERSCRIPT divide start_ARG d end_ARG start_ARG d italic_t end_ARG over~ start_ARG bold_q end_ARG ( italic_t ) end_ARG start_ARG ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ≤ italic_λ ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + ∥ bold_A ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT

Applying Lemma 5.1 with u(t)=𝐪~(t)2𝑢𝑡subscriptnorm~𝐪𝑡2u(t)=\left\|\tilde{\mathbf{q}}(t)\right\|_{2}italic_u ( italic_t ) = ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, α(t)=𝐀2𝐖2𝐪~(t)𝐪~(t)2𝛼𝑡subscriptnorm𝐀2subscriptnorm𝐖2subscriptnormtensor-product~𝐪𝑡~𝐪𝑡2\alpha(t)=\left\|\mathbf{A}\right\|_{2}\left\|\mathbf{W}\right\|_{2}\|\tilde{% \mathbf{q}}(t)\otimes\tilde{\mathbf{q}}(t)\|_{2}italic_α ( italic_t ) = ∥ bold_A ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∥ over~ start_ARG bold_q end_ARG ( italic_t ) ⊗ over~ start_ARG bold_q end_ARG ( italic_t ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and β(t)=λ𝛽𝑡𝜆\beta(t)=\lambdaitalic_β ( italic_t ) = italic_λ yields the result. ∎

Proposition B.1 indicates that the magnitude of 𝐖2subscriptnorm𝐖2\left\|\mathbf{W}\right\|_{2}∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT has a crucial impact on the stability of the resulting QM ROM. Consequently, it is important to apply sufficient regularization (i.e., choose ρ𝜌\rhoitalic_ρ large enough) when computing 𝐖𝐖\mathbf{W}bold_W to ensure that 𝐖2subscriptnorm𝐖2\left\|\mathbf{W}\right\|_{2}∥ bold_W ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT remains small.

Appendix C Main nomenclature

Notation

Kernel interpolation
K:×nxnxK:{}^{n_{x}}\times{}^{n_{x}}\to\realitalic_K : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT × start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → symmetric kernel function
Ksubscript𝐾{\cal H}_{K}caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT reproducing kernel Hilbert space
𝐱jnx\mathbf{x}_{j}\in{}^{n_{x}}bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT inputs for kernel interpolation
𝐲jny\mathbf{y}_{j}\in{}^{n_{y}}bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT outputs for kernel interpolation
𝐯:nxny\mathbf{v}:{}^{n_{x}}\to{}^{n_{y}}bold_v : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT function to interpolate: 𝐲j=𝐯(𝐱j)subscript𝐲𝑗𝐯subscript𝐱𝑗\mathbf{y}_{j}=\mathbf{v}(\mathbf{x}_{j})bold_y start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = bold_v ( bold_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT )
γ0𝛾0\gamma\geq 0italic_γ ≥ 0 kernel regularization parameter
𝛀m×ny{\boldsymbol{\Omega}}\in{}^{m\times n_{y}}bold_Ω ∈ start_FLOATSUPERSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT coefficient matrix for kernel interpolation
𝐬𝐯γKnysuperscriptsubscript𝐬𝐯𝛾superscriptsubscript𝐾subscript𝑛𝑦\mathbf{s}_{\mathbf{v}}^{\gamma}\in{\cal H}_{K}^{n_{y}}bold_s start_POSTSUBSCRIPT bold_v end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ∈ caligraphic_H start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT kernel interpolant of 𝐯𝐯\mathbf{v}bold_v with regularization γ𝛾\gammaitalic_γ
𝝍ϵ:nxm{\boldsymbol{\psi}}_{\!\epsilon}:{}^{n_{x}}\to{}^{m}bold_italic_ψ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT RBF kernel evaluation function
ϕ:nxnϕ{\boldsymbol{\phi}}:{}^{n_{x}}\to{}^{n_{\phi}}bold_italic_ϕ : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT feature map
𝐆nϕ×nϕ\mathbf{G}\in{}^{n_{\phi}\times n_{\phi}}bold_G ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT weighting matrix for feature map kernels
𝐂ny×nϕ\mathbf{C}\in{}^{n_{y}\times n_{\phi}}bold_C ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT post-feature map kernel coefficients
Full-order models
𝐪(t)nq\mathbf{q}(t)\in{}^{n_{q}}bold_q ( italic_t ) ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT full-order model state
𝐟:nqnq\mathbf{f}:{}^{n_{q}}\to{}^{n_{q}}bold_f : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT full-order model dynamics function
𝝁nμ{\boldsymbol{\mu}}\in{}^{n_{\mu}}bold_italic_μ ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT parameters for the initial condition
𝐐nq×M(nt+1)\mathbf{Q}\in{}^{n_{q}\times M(n_{t}+1)}bold_Q ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_M ( italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + 1 ) end_FLOATSUPERSCRIPT shifted state snapshot matrix (all trajectories)
Reduced-order models
𝐪~(t)r\tilde{\mathbf{q}}(t)\in{}^{r}over~ start_ARG bold_q end_ARG ( italic_t ) ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT intrusive reduced-order model state
𝐪^(t)r\hat{\mathbf{q}}(t)\in{}^{r}over^ start_ARG bold_q end_ARG ( italic_t ) ∈ start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT non-intrusive reduced-order model state
𝐕nq×r\mathbf{V}\in{}^{n_{q}\times r}bold_V ∈ start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT × italic_r end_FLOATSUPERSCRIPT proper orthogonal decomposition (POD) basis matrix
𝐖r×r(r+1)/2\mathbf{W}\in{}^{r\times r(r+1)/2}bold_W ∈ start_FLOATSUPERSCRIPT italic_r × italic_r ( italic_r + 1 ) / 2 end_FLOATSUPERSCRIPT quadratic manifold (QM) weight matrix
𝐠:rnq\mathbf{g}:{}^{r}\to{}^{n_{q}}bold_g : start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT decompression map
𝐡:nqr\mathbf{h}:{}^{n_{q}}\to{}^{r}bold_h : start_FLOATSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_FLOATSUPERSCRIPT → start_FLOATSUPERSCRIPT italic_r end_FLOATSUPERSCRIPT compression map
𝐞,𝐞^𝐞^𝐞\mathbf{e},\hat{\mathbf{e}}bold_e , over^ start_ARG bold_e end_ARG error quantities

References