Mathematics > Differential Geometry
[Submitted on 22 Nov 2024]
Title:Fill-Ins of Tori with Scalar Curvature Bounded from Below
View PDF HTML (experimental)Abstract:Let $\gamma$ be a Riemannian metric on $\Sigma = S^1 \times T^{n-2}$, where $3 \leq n \leq 7$. Consider $\Omega = B^2 \times T^{n-2}$ with boundary $\partial \Omega = \Sigma$, and let $g$ be a Riemannian metric on $\Omega$ such that the scalar curvature $R_g \geq -n(n - 1)$ and $g|_{\partial \Omega} = \gamma$. Assuming the mean curvature of $\partial \Omega$ with respect to the outward normal is positive, we establish that the total mean curvature of $\partial \Omega$ is bounded from above by a constant depending only on $n$ and $\gamma$. Furthermore, we compute the sharp constant for this estimate when $\gamma$ is a flat metric. This result resolves a special case of a conjecture by Gromov concerning total mean curvature of fill-in with scalar curvature bounded from below. The proof combines techniques developed by Shi-Tam, Shi-Wang-Wei, as well as recent work by Brendle-Hung on the systolic inequality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.