Computer Science > Machine Learning
[Submitted on 7 Nov 2023]
Title:User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal Rates
View PDFAbstract:We study differentially private stochastic convex optimization (DP-SCO) under user-level privacy, where each user may hold multiple data items. Existing work for user-level DP-SCO either requires super-polynomial runtime [Ghazi et al. (2023)] or requires the number of users to grow polynomially with the dimensionality of the problem with additional strict assumptions [Bassily et al. (2023)]. We develop new algorithms for user-level DP-SCO that obtain optimal rates for both convex and strongly convex functions in polynomial time and require the number of users to grow only logarithmically in the dimension. Moreover, our algorithms are the first to obtain optimal rates for non-smooth functions in polynomial time. These algorithms are based on multiple-pass DP-SGD, combined with a novel private mean estimation procedure for concentrated data, which applies an outlier removal step before estimating the mean of the gradients.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.