Computer Science > Artificial Intelligence
[Submitted on 18 May 2023]
Title:Think Outside the Code: Brainstorming Boosts Large Language Models in Code Generation
View PDFAbstract:Code generation aims to automatically generate source code from high-level task specifications, which can significantly increase productivity of software engineering. Recently, approaches based on large language models (LLMs) have shown remarkable code generation abilities on simple tasks. However, generate code for more complex tasks, such as competition-level problems, remains challenging. In this paper, we introduce Brainstorm framework for code generation. It leverages a brainstorming step that generates and selects diverse thoughts on the problem to facilitate algorithmic reasoning, where the thoughts are possible blueprint of solving the problem. We demonstrate that Brainstorm significantly enhances the ability of LLMs to solve competition-level programming problems, resulting in a more than 50% increase in the pass@$k$ metrics for ChatGPT on the CodeContests benchmark, achieving state-of-the-art performance. Furthermore, our experiments conducted on LeetCode contests show that our framework boosts the ability of ChatGPT to a level comparable to that of human programmers.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.