Computer Science > Software Engineering
[Submitted on 24 Aug 2021]
Title:An Empirical Study on Refactoring-Inducing Pull Requests
View PDFAbstract:Background: Pull-based development has shaped the practice of Modern Code Review (MCR), in which reviewers can contribute code improvements, such as refactorings, through comments and commits in Pull Requests (PRs). Past MCR studies uniformly treat all PRs, regardless of whether they induce refactoring or not. We define a PR as refactoring-inducing, when refactoring edits are performed after the initial commit(s), as either a result of discussion among reviewers or spontaneous actions carried out by the PR developer. Aims: This mixed study (quantitative and qualitative) explores code reviewing-related aspects intending to characterize refactoring-inducing PRs. Method: We hypothesize that refactoring-inducing PRs have distinct characteristics than non-refactoring-inducing ones and thus deserve special attention and treatment from researchers, practitioners, and tool builders. To investigate our hypothesis, we mined a sample of 1,845 Apache's merged PRs from GitHub, mined refactoring edits in these PRs, and ran a comparative study between refactoring-inducing and non-refactoring-inducing PRs. We also manually examined 2,096 review comments and 1,891 detected refactorings from 228 refactoring-inducing PRs. Results: We found 30.2% of refactoring-inducing PRs in our sample and that they significantly differ from non-refactoring-inducing ones in terms of number of commits, code churn, number of file changes, number of review comments, length of discussion, and time to merge. However, we found no statistical evidence that the number of reviewers is related to refactoring-inducement. Our qualitative analysis revealed that at least one refactoring edit was induced by review in 133 (58.3%) of the refactoring-inducing PRs examined. Conclusions: Our findings suggest directions for researchers, practitioners, and tool builders to improve practices around pull-based code review.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.