Computer Science > Neural and Evolutionary Computing
[Submitted on 31 Mar 2021]
Title:A Signal-Centric Perspective on the Evolution of Symbolic Communication
View PDFAbstract:The evolution of symbolic communication is a longstanding open research question in biology. While some theories suggest that it originated from sub-symbolic communication (i.e., iconic or indexical), little experimental evidence exists on how organisms can actually evolve to define a shared set of symbols with unique interpretable meaning, thus being capable of encoding and decoding discrete information. Here, we use a simple synthetic model composed of sender and receiver agents controlled by Continuous-Time Recurrent Neural Networks, which are optimized by means of neuro-evolution. We characterize signal decoding as either regression or classification, with limited and unlimited signal amplitude. First, we show how this choice affects the complexity of the evolutionary search, and leads to different levels of generalization. We then assess the effect of noise, and test the evolved signaling system in a referential game. In various settings, we observe agents evolving to share a dictionary of symbols, with each symbol spontaneously associated to a 1-D unique signal. Finally, we analyze the constellation of signals associated to the evolved signaling systems and note that in most cases these resemble a Pulse Amplitude Modulation system.
Submission history
From: Giovanni Iacca Prof. [view email][v1] Wed, 31 Mar 2021 08:05:01 UTC (11,508 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.