Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Mar 2021 (v1), last revised 12 Jul 2022 (this version, v3)]
Title:Self-Supervised Classification Network
View PDFAbstract:We present Self-Classifier -- a novel self-supervised end-to-end classification learning approach. Self-Classifier learns labels and representations simultaneously in a single-stage end-to-end manner by optimizing for same-class prediction of two augmented views of the same sample. To guarantee non-degenerate solutions (i.e., solutions where all labels are assigned to the same class) we propose a mathematically motivated variant of the cross-entropy loss that has a uniform prior asserted on the predicted labels. In our theoretical analysis, we prove that degenerate solutions are not in the set of optimal solutions of our approach. Self-Classifier is simple to implement and scalable. Unlike other popular unsupervised classification and contrastive representation learning approaches, it does not require any form of pre-training, expectation-maximization, pseudo-labeling, external clustering, a second network, stop-gradient operation, or negative pairs. Despite its simplicity, our approach sets a new state of the art for unsupervised classification of ImageNet; and even achieves comparable to state-of-the-art results for unsupervised representation learning. Code is available at this https URL.
Submission history
From: Elad Amrani [view email][v1] Fri, 19 Mar 2021 19:29:42 UTC (1,166 KB)
[v2] Thu, 9 Dec 2021 10:21:51 UTC (5,579 KB)
[v3] Tue, 12 Jul 2022 14:25:52 UTC (5,591 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.