Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Mar 2020 (v1), last revised 20 Apr 2020 (this version, v2)]
Title:Gated Texture CNN for Efficient and Configurable Image Denoising
View PDFAbstract:Convolutional neural network (CNN)-based image denoising methods typically estimate the noise component contained in a noisy input image and restore a clean image by subtracting the estimated noise from the input. However, previous denoising methods tend to remove high-frequency information (e.g., textures) from the input. It caused by intermediate feature maps of CNN contains texture information. A straightforward approach to this problem is stacking numerous layers, which leads to a high computational cost. To achieve high performance and computational efficiency, we propose a gated texture CNN (GTCNN), which is designed to carefully exclude the texture information from each intermediate feature map of the CNN by incorporating gating mechanisms. Our GTCNN achieves state-of-the-art performance with 4.8 times fewer parameters than previous state-of-the-art methods. Furthermore, the GTCNN allows us to interactively control the texture strength in the output image without any additional modules, training, or computational costs.
Submission history
From: Kaito Imai [view email][v1] Mon, 16 Mar 2020 06:37:07 UTC (7,519 KB)
[v2] Mon, 20 Apr 2020 01:59:52 UTC (7,519 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.