Quantum Physics
[Submitted on 11 Mar 2020]
Title:Theory of Noise-Scaled Stability Bounds and Entanglement Rate Maximization in the Quantum Internet
View PDFAbstract:Crucial problems of the quantum Internet are the derivation of stability properties of quantum repeaters and theory of entanglement rate maximization in an entangled network structure. The stability property of a quantum repeater entails that all incoming density matrices can be swapped with a target density matrix. The strong stability of a quantum repeater implies stable entanglement swapping with the boundness of stored density matrices in the quantum memory and the boundness of delays. Here, a theoretical framework of noise-scaled stability analysis and entanglement rate maximization is conceived for the quantum Internet. We define the term of entanglement swapping set that models the status of quantum memory of a quantum repeater with the stored density matrices. We determine the optimal entanglement swapping method that maximizes the entanglement rate of the quantum repeaters at the different entanglement swapping sets as function of the noise of the local memory and local operations. We prove the stability properties for non-complete entanglement swapping sets, complete entanglement swapping sets and perfect entanglement swapping sets. We prove the entanglement rates for the different entanglement swapping sets and noise levels. The results can be applied to the experimental quantum Internet.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.