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ABSTRACT

Offline reinforcement learning enables agents to leverage large pre-collected
datasets of environment transitions to learn control policies, circumventing the
need for potentially expensive or unsafe online data collection. Significant progress
has been made recently in offline model-based reinforcement learning, approaches
which leverage a learned dynamics model. This typically involves constructing a
probabilistic model, and using the model uncertainty to penalize rewards where
there is insufficient data, solving for a pessimistic MDP that lower bounds the
true MDP. Existing methods, however, exhibit a breakdown between theory and
practice, whereby pessimistic return ought to be bounded by the total variation
distance of the model from the true dynamics, but is instead implemented through a
penalty based on estimated model uncertainty. This has spawned a variety of uncer-
tainty heuristics, with little to no comparison between differing approaches. In this
paper, we compare these heuristics, and design novel protocols to investigate their
interaction with other hyperparameters, such as the number of models, or imaginary
rollout horizon. Using these insights, we show that selecting these key hyperparam-
eters using Bayesian Optimization produces superior configurations that are vastly
different to those currently used in existing hand-tuned state-of-the-art methods,
and result in drastically stronger performance.

1 INTRODUCTION

In offline (or batch) reinforcement learning (RL) (Ernst et al., 2005; Levine et al., 2020), the goal is
to leverage offline datasets of transitions in an environment to train a policy that transfers to an online
task. This could have vast implications for using RL in real-world settings, as agents can make use
of ever-increasing amounts of data without the need for an accurate simulator, while also avoiding
expensive and potentially even unsafe exploration in the environment.

Model-based reinforcement learning (MBRL) has recently shown promise in this paradigm, obtaining
state-of-the-art performance on offline RL benchmarks (Kidambi et al., 2020; Yu et al., 2021),
improving upon powerful model-free approaches (e.g. Kumar et al. (2020)). MBRL works by
training a dynamics model from the offline data, then optimizing a policy using imaginary rollouts
from the model. This allows the agent to learn from on-policy experience, as the model is agnostic
to the policy used to generate data, making it possible to achieve high returns using data collected
from even a random policy. Furthermore, recent work has demonstrated the utility of world models
beyond maximizing return, such as generalizing to unseen variations in an environment (Ball et al.,
2021), transferring to new tasks (Yu et al., 2020), and learning with safety constraints (Argenson &
Dulac-Arnold, 2021). Therefore, the case for MBRL in offline RL is clear: not only does it represent
state-of-the-art in terms of performance, but it also provides the opportunity to maximize the signal
in the offline data to generalize onto tasks beyond those encoded by the behavior policy. This is
crucial for offline RL to be useful for real-world tasks (Dulac-Arnold et al., 2021), where there will
inevitably be differences between the data and desired task.

However, a common failure mode of MBRL is when policies exploit the model in parts of the
state-action space where the model is inaccurate. Thus, naïve application of MBRL to offline data
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Figure 1: a) The variation of different uncertainty penalties against true dynamics error during a model rollout
of Hopper Medium-Expert. The canonical ensemble variance penalty most closely fits the true dynamics error.
b) Tuning key hyperparameters (an approach we call Optimized) can lead to large gains over state-of-the-art
methods (MOPO) on the D4RL benchmark, as we show in this summary using rliable (Agarwal et al., 2021).

can result in suboptimal performance. To prevent this, concurrent works (Yu et al., 2020; Kidambi
et al., 2020) have approached the problem by training a policy in a pessimistic MDP (P-MDP). The
P-MDP lower bounds the true MDP, and discourages the policy from regions where there is large
discrepancy between the true and learned dynamics; this often provides a theoretical guarantee of
improvement over cloning the behavior policy that generated the offline data. This is made practically
possible by adding a penalty correlated with the uncertainty in the dynamics model. However, while
these recent successes are similar in principle, in practice they differ in a series of design choices.
First and foremost, they make use of different heuristics to measure model uncertainty, in some cases
deviating from simpler metrics which are more consistent with the theory.

In this paper, we conduct a rigorous investigation into a series of these design choices. We begin by
focusing on the choice of uncertainty metric, comparing both recent state-of-the-art offline approaches
(Kidambi et al., 2020; Yu et al., 2020; Rafailov et al., 2020) with additional metrics used in the online
setting (Ball et al., 2020; Pan et al., 2020; Cowen-Rivers et al., 2022). We also explore the interaction
with a series of other hyperparameters, such as the number of models and imaginary rollout length.
Interestingly, the relationship between these variables and model uncertainty varies significantly
depending on the choice of uncertainty penalty. Furthermore, we compare these uncertainty heuristics
under new evaluation protocols that, for the first time, capture the specific covariate shift induced by
model-based RL. This allows us to assess calibration to model exploitation in MBRL, observing that
some existing penalties are surprisingly successful at capturing the errors in predicted dynamics, as
seen in Fig. 1a (see App. D for details). Then, using the insights gained from sections 4 and 5, we
then achieve a 43% gain over a previously grid-searched method by using a single hyperparameter
value across all environments. We then jointly fine-tune our identified key variables using a powerful
Bayesian Optimization algorithm (Wan et al., 2021) and find the simpler uncertainty measures can
provide state-of-the-art results in continuous control offline benchmarks, and that the chosen optimal
hyperparameters continue to align with our analysis. Finally, we rigorously confirm the aggregate
improvement of our results using the rliable framework (Agarwal et al., 2021) in Fig. 1b, and
show that the improvements over existing methods are significant (see App. H for details). This work
is intended to benefit both researchers and practitioners in offline RL. Our main findings include:

• Longer horizon rollouts with larger penalties can improve existing methods. Contrary to
common wisdom, conducting significantly longer rollouts inside the model, coupled with larger
uncertainty penalties, typically improves performance.

• Penalties that use canonical forms of uncertainty estimation achieve better correlation with
OOD measures. The uncertainty estimation approach of Lakshminarayanan et al. (2017) often
outperforms the penalty from state-of-the-art methods (Yu et al., 2020; Kidambi et al., 2020).
We observe that the ensemble standard deviation is statistically strikingly similar to that used in
Kidambi et al. (2020), but has improved correlation and scaling behavior.

• Uncertainty is more correlated with dynamics error than distribution shift. We find that suc-
cessful penalties measure the discrepancy in dynamics, and can in fact assign high certainty to data
far away from the offline data.

2 RELATED WORK

Two recent works concurrently demonstrated the effectiveness of model-based reinforcement learning
(MBRL) in the offline setting. MOPO (Yu et al., 2020) follows the successful online RL algorithm
MBPO (Janner et al., 2019) but trains inside a conservative MDP, penalizing the reward based on the
maximum aleatoric uncertainty over the ensemble members. MOReL (Kidambi et al., 2020) achieves
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even stronger performance, penalizing the rewards by a penalty based on the maximum pair-wise
difference in ensemble member predictions. For pixel-based tasks, LOMPO (Rafailov et al., 2020)
also proposed a novel penalty, using the variance of ensemble log-likelihoods. Outside the offline
setting, probabilistic dynamics models leveraging uncertainty have underpinned a series of successes
(Chua et al., 2018; Kurutach et al., 2018; Buckman et al., 2018; Pan et al., 2020; Pacchiano et al.,
2021). Uncertainty can also be measured in MBRL without the use of neural networks (Deisenroth &
Rasmussen, 2011), although these methods tend to be harder to scale and thus lack widespread use.

Effective hyperparameter selection in RL has been shown to be crucial to the success of popular
algorithms (Engstrom et al., 2020; Andrychowicz et al., 2021). This becomes even more challenging
in MBRL with additional hyperparameters/design-choices for the dynamics model. Recent work has
shown that carefully optimizing these hyperparameters for online MBRL can significantly improve
performance, with the tuned agent breaking the MuJoCo simulator (Zhang et al., 2021). In contrast,
we focus on the offline setting, and investigate parameters specifically related to uncertainty estimation.
Previous work studied the impact of hyperparameters in offline RL (Paine et al., 2020), finding offline
RL algorithms to be brittle to hyperparameter choices. However, unlike our work they only consider
model-free approaches, whereas we specifically investigate model-based offline algorithms. Abbas
et al. (2020) investigates the impact of different uncertainty estimation methods in online MBRL;
they too find penalizing with combined aleatoric and epistemic uncertainty improves performance.

Our work also relates to the rich literature on deep ensembles (Lakshminarayanan et al., 2017), which
train multiple deep neural networks with different initializations and dataset orderings, and generally
outperform variational Bayes methods (Mackay, 1992; Blundell et al., 2015). Achieving effective
calibration with neural networks is notoriously difficult (Guo et al., 2017; Kuleshov et al., 2018;
Maddox et al., 2019), and furthermore we require calibration under co-variate shift (Ovadia et al.,
2019), as the policy learned in the model will likely deviate from the behavior policy that generated
the offline data. Recent work has highlighted this issue in offline RL (Kumar et al., 2020; Yu et al.,
2021) and has reported superior performance when eschewing model uncertainty entirely, and instead
performing “conservative" Q-updates. However, it is unclear if this improvement is due to poor
uncertainty calibration, implementation details, or a limitation in the pessimistic-MDP formulation.

3 BACKGROUND

All of the methods we investigate in this paper model the environment as a Markov Decision Process
(MDP), defined as a tuple M = (S,A, P,R, ρ0, γ), where S and A denote the state and action
spaces respectively, P (s′|s, a) the transition dynamics, R(s, a) the reward function, ρ0 the initial
state distribution, and γ ∈ (0, 1) the discount factor. The goal is to optimize a policy π(a|s) that
maximizes the expected discounted return Eπ,P,ρ0 [

∑∞
t=0 γ

tR(st, at)].

In offline RL, the policy is not deployed in the environment until test time. Instead, the algorithm only
has access to a static dataset Denv = {(sj , aj , rj , sj+1)}Jj=1, collected by one or more behavioral
policies πb. Following the notation in Yu et al. (2020) we refer to the distribution from which Denv
was sampled as the behavioral distribution. The canonical approach in offline MBRL is to train
an ensemble of N probabilistic dynamics models (Nix & Weigend, 1994). These usually learn to
predict both the next state st+1 and reward rt from a state-action pair, and are trained on Denv
using supervised learning. Concretely, each of the N models output a Gaussian P̂ iφ(st+1, rt|st, at) =

N (µiφ(st, at),Σ
i
φ(st, at)) parameterized by φ. The resulting learned dynamics model P̂ and reward

model R̂ define a model MDP M̂ = (S,A, P̂ , R̂, ρ0, γ). To train the policy, we use k-step rollouts
inside M̂ to generate trajectories (Sutton, 1991).

To prevent policy exploitation in a model, a pessimistic MDP (P-MDP) is constructed by lower
bounding the true-expected return, ηM (π), using some error between the true and estimated models.
For instance, in Yu et al. (2020), the authors show that a lower bound on the return can be established
by penalizing the reward by a measure that corresponds to estimated model error:

ηM (π) ≥ E
(s,a)∼ρπ

P̂

[
R(s, a)− γ|Gπ

M̂
(s, a)|

]
(1)

where ρπ
P̂

represents transitioning under the dynamics model P̂ and policy π. Several potential
choices for |Gπ

M̂
(s, a)| are proposed, including an upper bound based on the total variation distance
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between the learned and true dynamics. However, for their practical algorithm, the authors elect
to use a heuristic based on impressive empirical results. Concurrent to MOPO, MOReL (Kidambi
et al., 2020) in theory constructs a P-MDP by augmenting a standard MDP with a negative valued
absorbing state that is transitioned to when total variation distance between true and learned dynamics
is exceeded. They show that a policy learned in this P-MDP exceeds simple behavior cloning.
However, while dynamics-based total variation distance has desirable theoretical properties, the
practical algorithm relies on another heuristic to approximate this quantity. This motivates the study
of penalties used, as well as other under-used candidates, and their overall effectiveness.

4 UNCERTAINTY PENALTY

The key idea underpinning recent success in offline MBRL is the introduction of a P-MDP, penalized
by some uncertainty penalty. The theory dictates this should be some distance measure between the
true and predicted dynamics. Of course, this cannot be truly estimated without access to an oracle,
so a proxy for this quantity is constructed instead based on uncertainty heuristics. In this paper, we
compare the following uncertainty heuristics, from recent works in both offline and online MBRL:

Max Aleatoric (Yu et al., 2020): maxi=1,...,N ||Σiφ(s, a)||F, which corresponds to the maximum
aleatoric error, computed over the variance heads of the model ensemble.
Max Pairwise Diff (Kidambi et al., 2020): maxi,j ||µiφ(s, a) − µjφ(s, a)||2, which corresponds to
the pairwise maximum difference of the ensemble predictions.
LL Var (Log-Likelihood Variance) (Rafailov et al., 2020)): Var({log P̂ iφ(s′|s, a), i = 1, . . . , N}),
where s′ is a next state sampled from a single ensemble member. We evaluate its log-likelihood under
each ensemble member and take the variance.
LOO KL (Leave-One-Out KL Divergence (Pan et al., 2020): DKL[P̂φi(·|s, a)||P̂φ−i(·|s, a)],
which corresponds to the KL divergence between the Gaussian parameterized by a randomly selected
ensemble member, and the aggregated Gaussian of the remaining ensemble members.
Ensemble Standard Deviation/Variance (Lakshminarayanan et al., 2017): The variance is given
as: Σ∗(s, a) = 1

N

∑N
i ((Σiφ(s, a))2 + (µiφ(s, a))2)− (µ∗(s, a))2 where µ∗ is the mean of the means

(µ∗(s, a) = 1
N

∑N
i µ

i
φ(s, a)). This corresponds to a combination of epistemic and aleatoric model

uncertainty. This is surprisingly under-utilized in offline MBRL, and is a canonical method of
uncertainty estimation used in the Bayesian inference literature (Ovadia et al., 2019; Filos et al., 2019;
Scalia et al., 2020). We choose to evaluate both standard deviation (the square root of the above) and
variance, as this will provide intuition about the importance of penalty distribution shape.

These can all be computed using the output from an ensemble of probabilistic dynamics models
(Lakshminarayanan et al., 2017), so we are able to compare them in a controlled manner.

4.1 HOW WELL DO ENSEMBLE PENALTIES DETECT OUT OF DISTRIBUTION ERRORS?

We begin by assessing how well uncertainty penalties correlate with next state MSE (we justify the
MSE under deterministic dynamics in App. A.2). This is crucial in penalizing the policy from visiting
parts of the state-action space where the model is inaccurate, and therefore exploitable. Using D4RL
(Fu et al., 2021a), we train models on each dataset, then evaluate them on other datasets from the
same environment, but collected under different policies. These form our “Transfer” experiments
as they directly measure the ability of uncertainty penalties at detecting errors on unseen data. We
compare the penalties against true MSE for a variety of settings in App. A.3, and summarize this
in the “Transfer” column of Table 1. We measure Spearman rank (ρ) and Pearson bivariate (r)
correlations, and justify their use in App. A.1. Full details of all experiments and hyperparameters
are given in App. G. We will analyze these results in detail in the next section, after introducing a
novel protocol for assessing our penalties under the out-of-distribution (OOD) data induced by model
exploitation.

4.2 HOW DO THESE PERFORM DURING AN IMAGINARY ROLLOUT?

We additionally design an experiment aimed at capturing the OOD data generated by the actual
offline MBRL process, which we call our “True Model-Based” experiments. First, we train a set of
policies with 4 different starting seeds without a penalty inside the model for 500 iterations. We
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Table 1: Correlation statistics of penalties against true mean-sq. model error, averaged over all datasets (i.e.,
Random through to Expert) showing ± 1 SD over 12 seeds. The best in each column is bolded. The ensemble
penalties generally perform best.

Transfer True Model-Based
HalfCheetah Hopper HalfCheetah Hopper

Penalty ρ r ρ r ρ r ρ r

Max Aleatoric 0.78±0.00 0.55±0.01 0.71±0.01 0.41±0.01 0.58±0.01 0.42±0.01 0.73±0.03 0.48±0.01
Max Pairwise Diff. 0.79±0.01 0.62±0.00 0.77±0.00 0.57±0.00 0.58±0.01 0.52±0.01 0.75±0.02 0.55±0.02
Ens. Std. 0.82±0.01 0.64±0.01 0.79±0.00 0.56±0.00 0.61±0.01 0.52±0.00 0.79±0.02 0.55±0.02
Ens. Var. 0.82±0.01 0.67±0.00 0.79±0.00 0.59±0.00 0.60±0.01 0.49±0.01 0.77±0.02 0.55±0.02
LL Var. 0.13±0.05 0.14±0.02 0.36±0.04 0.12±0.02 0.04±0.16 0.07±0.06 0.50±0.02 0.16±0.02
LOO KL 0.03±0.02 0.11±0.02 0.11±0.02 0.08±0.02 -0.02±0.12 0.06±0.06 0.22±0.02 0.10±0.02

then measure the difference between the return predicted by the model over a rollout, and the true
return in the real environment. We define a policy to be “exploitative” if the model significantly
over-estimates the return compared to the true return. It is these exploitative policies that induce the
types of extrapolation errors which cause MBRL methods to fail in the offline setting. It is therefore
important that the penalty is able to accurately determine when the model is being exploited in this
way. We use a subset of the 5 most exploitative policies to generate trajectories in the model, and
record the uncertainty predicted by each penalty at every time step. To generate the True Model-Based
data, we then “replay” these trajectories in the true environment, loading the state and action taken in
the model into the environment, and record the “true” next state according to the MuJoCo simulator
(Todorov et al., 2012). True Model-Based therefore calculates the MSE between the predicted and
actual next states. Table 1 summarizes the results from both the Transfer and True Model-Based
experiments. Additional details are provided in App. D along with full correlation plots in App. A.3.

We are now in a position to analyze the results in Table 1. It is immediately obvious that the LOO KL
and LL Var penalties have very weak correlation with MSE. We believe this is because LL Var relies
on likelihood statistics, which are notoriously sensitive; it was designed for use with a KL-regularized
latent state space model which has well-behaved dynamics. Regarding LOO KL, we note that this
penalty was designed for the online setting with significantly less data, and becomes quite uncorrelated
in this larger data setting. This advocates penalties that are less reliant on distributional information
concerning the separate Gaussians in the ensemble, as such penalties appear sensitive to the quality
of their estimated distributions. We observe that Max Aleatoric, Max Pairwise Diff and the Ensemble
penalties perform broadly similarly despite their different analytical forms; Ensemble measures do
however exhibit noticeably higher rank correlation. We also observe a significant performance loss
between the Transfer and True Model-Based HalfCheetah settings, with the latter being relatively
poor. This implies further work is needed to develop penalties that can successfully detect the type
of dynamics discrepancies that actually arise in offline MBRL. Finally, we observe that despite the
similar rank correlations ρ, the bivariate correlations r can vary considerably, and observe from the
scatter plots that Max Aleatoric exhibits low kurtosis, having large penalty values “bunched” at its
extreme; we provide 3rd and 4th order moment statistics to facilitate shape comparisons in App. C.

5 KEY HYPERPARAMETERS IN OFFLINE MBRL

5.1 HOW MANY MODELS DO WE NEED?

At present the number of models used has not been discussed since MBPO, which trains seven
probabilistic dynamics models of the same architecture (with different initializations), using only the
top five models based on validation accuracy (referred to as “Elites” in the Evolutionary community,
e.g. Mouret & Clune (2015)). The reason or justification for this is not discussed, but it has seemingly
been adopted in the wider MBRL setting (Shen et al., 2020; Omer et al., 2021; Pineda et al., 2021).
However, offline RL is a totally different paradigm, where it is possible that access to compute is less
of a bottleneck and it may be preferable to use more models to extract the most signal possible from
the static dataset. Inevitably, many of the ensemble penalties are dependent on the number of models;
for example, it is easy to see that the Max Aleatoric value could scale poorly with more models.

How Does Penalty Distribution Change with Model Count? We now vary the number of models
used in the calculation of the penalties and plot their respective distributions; an illustrative example
is shown in Fig. 2 with full results in App. B. The scaling of penalties relying on max over sets is most
affected with increasing the number of models due to admitting more extreme values, and we observe
that the distribution shape of Max Aleatoric changes significantly as we admit more models, which
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Figure 2: Box Plots showing D4RL Medium transferred to Random. We show IQR limits and the median value
denoted by the black vertical line. Green = HalfCheetah, Blue = Hopper. Max Aleatoric, Max Pairw. Diff. and
LOO KL are unstable w.r.t. ensemble member count. In contrast, ensemble variance and std. are far more stable.

we validate in App. C. This impacts the tuning of this hyperparameter, as we have to contend with a
changing distribution along with calibration quality (which we explore in the next section). Finally,
we observe that the Ensemble penalties change the least with differing model count, highlighting
their ease of tuning; this is clearly a desirable property for designing such metrics going forward.
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Figure 3: Plot of how error and penalty correlation
changes with model number in Hopper across all
datasets (i.e., Random through to Expert).

How does Penalty Performance Scale with Model
Count? Empirically, there exists an optimal number
of models to use in an ensemble for model-based RL
(Kurutach et al., 2018; Matsushima et al., 2021). Up
to now, heuristics have been used to select how many
models we use for uncertainty estimation, despite it
being possible to use a different number of models for
dynamics prediction and uncertainty estimation. For
instance, in MOPO, transitions are generated with
five Elite models, but all seven models are used to
calculate the penalty. In MOReL, four models are
used for both transitions and penalty prediction. Therefore, we wish to understand if there is merit to
using a larger number of models for uncertainty estimation compared with next state prediction. We
provide a snapshot in Fig. 3, showing the aggregated results on the True Model-Based data in Hopper,
with full results in App. B. We see there is no clear consensus, and that the optimal number of models
is highly dependent on environment, the behavior data, and penalty type, with some settings showing
improved calibration with model count and vice-versa. This clearly justifies treating the number of
models as a hyperparameter that is important to tune, especially on transfer tasks. Interestingly, we
observe that it is possible to simultaneously improve rank (ρ) correlation, but reduce bivariate (r)
correlation, especially with the MOPO penalty. This again suggests that the number of models not
only affects the quality of the estimation, but also its distributional shape.

5.2 THE WEIGHT OF UNCERTAINTY λ

To weight penalty against reward, MOPO introduces a parameter λ that trades off between the two
terms. In their paper, the authors sweep over λ ∈ {1, 5} for each environment. However, the optimal
values may lie outside this region. Furthermore, we have shown this value will need to drastically
change to account for using a different penalty or even number of models.

5.3 THE ROLLOUT HORIZON h

The horizon h of the rollouts plays a crucial role in offline RL. Longer horizon rollouts increase the
likelihood of errors in the transitions (we verify this intuition in App. D), but conversely can improve
performance when errors are properly managed (Janner et al., 2019; Pan et al., 2020). Furthermore,
as highlighted in Fig. 1a, the model can generalize, and dynamics error does not necessarily increase
with drift away from the offline dataset. Instead, we observe spikes, and note it is possible to recover
from these to valid states and transitions. It is therefore imperative that a penalty captures these spikes
over the course of an entire model rollout with horizon h, and down-weights the reward accordingly.

Using this observation, we design a novel experiment that treats these spikes as “positive” labels,
and normalize each penalty to [0, 1]. This converts the penalties into a probabilistic classifier, and
we evaluate how well they classify these events that occur increasingly under longer h. This is
precisely the intuition behind the LOO KL and LL Var approaches, whereby the penalty acts as an
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Table 2: Performance of different penalties as OOD event detectors averaged over all datasets in Hopper and
HalfCheetah (i.e., Random through to Expert) showing ± 1 SD over 12 seeds. AUC is “Area Under Curve” and
AP is “Average Precision”. The best (highest) in each column is highlighted in bold.

Percentile
90th 95th 99th

Dynamics Distribution Dynamics Distribution Dynamics Distribution
Penalty AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
Max Aleatoric 0.89±0.01 0.50±0.02 0.76±0.01 0.35±0.01 0.89±0.00 0.35±0.02 0.80±0.01 0.27±0.01 0.92±0.00 0.20±0.04 0.89±0.03 0.16±0.04
Max Pairwise Diff. 0.90±0.00 0.54±0.01 0.77±0.01 0.34±0.01 0.91±0.00 0.40±0.02 0.81±0.01 0.28±0.01 0.93±0.00 0.26±0.01 0.89±0.02 0.15±0.02
Ensemble Std. 0.90±0.00 0.55±0.01 0.79±0.01 0.38±0.01 0.91±0.00 0.40±0.02 0.83±0.01 0.31±0.01 0.93±0.00 0.25±0.02 0.90±0.02 0.18±0.02
Ensemble Var. 0.90±0.00 0.56±0.01 0.78±0.01 0.35±0.01 0.91±0.00 0.42±0.02 0.82±0.01 0.29±0.01 0.93±0.00 0.27±0.01 0.89±0.02 0.16±0.02
LL Var. 0.66±0.03 0.33±0.00 0.74±0.02 0.33±0.00 0.67±0.02 0.21±0.02 0.76±0.02 0.25±0.02 0.73±0.03 0.09±0.01 0.81±0.02 0.11±0.01
LOO KL 0.59±0.03 0.21±0.01 0.68±0.00 0.24±0.02 0.60±0.02 0.12±0.00 0.70±0.01 0.14±0.02 0.65±0.03 0.04±0.00 0.72±0.02 0.05±0.00

anomaly detector, removing detrimental transitions that lie above a threshold. This is the regime
we focus on here, where binary detection is more important than correlation. Finally, we assess
two “True Model-Based” errors: the dynamics error as before, and introduce the distance from the
offline distribution trained on, which we calculate as the 2-norm between a state-action tuple and its
nearest point in the offline data (Dadashi et al., 2021); these are called “Dynamics” and “Distribution”
respectively. We provide precision-recall curves and more details on this experiment in App. D and E.

We observe in Table 2 that the penalties are powerful at identifying dynamics discrepancy, but not as
accurate at identifying when the world-model data is out-of-distribution with respect to the offline
data. This is a well-known phenomenon in deep neural networks and has been recently investigated in
terms of feature collapse (Van Amersfoort et al., 2020), where latent representations of points far away
in the input space get mapped close together. On the other hand, this shows an important distinction
between the regularization induced by MBRL uncertainty and explicit state-action regularization
in model-free approaches, such as Kumar et al. (2020); Wu et al. (2021). In the latter approaches,
policies are penalized for taking out of distribution actions w.r.t. the offline dataset, but this is
not always the case with policies trained under MBRL and uncertainty penalties. The success of
MBRL methods in RL may therefore lie in the generation of state-action samples that are OOD but
represent accurate dynamics, thus facilitating dynamics generalization in policies; recent work has
shown that augmenting dynamics improves offline RL policy generalization (Ball et al., 2021). We
believe future work understanding the implications of this property is vitally important.

6 TESTING THE LIMITS OF CURRENT APPROACHES

Given our previous analysis, in this section we seek to answer the following question: how well can
existing methods perform with a more optimal selection of the discussed hyperparameters? To answer
this, we consider, first, a naïve selection of one hyperparameter set across all environments (based
on our previous analysis), and then more definitively, tuning the configuration for each individual
D4RL MuJoCo environment using a state-of-the-art Bayesian Optimization (BO) algorithm (Wan
et al., 2021). Our first set of results show that following our analysis can provide significant gains
over existing baselines, whilst the second beats the current SoTA. Note, previous analysis focused on
HalfCheetah and Hopper environments, so we extend our evaluation to Walker2d as a held-out test.

General applicability of our insights. Two of our main takeaways in Sections 4 and 5 are that
we should favor the canonical Ensemble penalties and longer rollout horizons. To test these claims,
we design an experiment where we fix h = 20 for the horizon (c.f. h = 5 in MOPO at most), and
only use Ensemble Std. as our penalty (see App. G for details). Since tuning the penalty weight
λ per environment is unrealistic, we employ an automatic penalty tuning scheme, analogous to the
automatic entropy tuning used in Haarnoja et al. (2018). We tune the penalty weight on-the-fly to a
constraint value of Λ = 1, meaning we use only a single hyperparameter across all environments.
Full details on the penalty weight tuning are provided in App. I. With this approach, we get an
average reward of 49.0 in the D4RL locomotion test suite (Fu et al., 2021a), an increase of 43% over
MOPO, which was grid-searched per environment.

This clearly shows that applying the findings from our analysis provides large performance gains
generally. This result is the best we know for a single hyperparameter setup, and is particularly
significant as other offline MBRL algorithms tune many hyperparameters per environment. This
‘zero-shot’ hyperparameter restriction is also the most realistic application of offline RL to real world
problems. If we were to allow ourselves to take the maximum over just 2 hyperparameter setups (the
second setup being h = 10, Λ = 0.5), we achieve an average reward of 57.8, an increase of 69%
over MOPO. We show the full results in Table 8 in App. I with improvement probabilities.
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Table 3: Best hyperparameters discovered by our BO algorithm, followed by a comparative evaluation on the
D4RL benchmark suite against other model-based RL algorithms. We use D4RL v0 datasets. The raw score for
Optimized† and MOPO† was taken to be the average over the last 10 iterations of policy training, averaged over
4 seeds and showing ± 1 SD. Results of MOPO and COMBO were taken from the COMBO paper. Results for
MOReL were taken from its paper. ? indicates p < 0.05 for Welch’s t-test for gain over MOPO. †Run on our
codebase. ‡Authors’ reported scores. ◦Authors used D4RL v2, which has more performant offline data.

Environment Discovered Hyperparameters Optimized† MOPO† MOPO‡ MOReL◦ COMBO
N λ h Penalty

HalfCheetah

random 10 6.64 12 Ensemble Std 31.7 ±1.5 32.7 ±1.7 35.4 25.6 38.8
mixed 11 0.96 37 Ensemble Var 58.0 ±2.5 52.8 ±1.1 53.1 40.2 55.1
medium 12 5.92 6 Ensemble Var 45.7 ±2.6 46.5 ±0.7 42.3 42.1 54.2
med.-exp. 7 4.56 5 Max Aleatoric 104.2 ±5.7 ? 67.6 ±23.6 63.3 53.3 90.0

Hopper

random 6 4.46 47 Ensemble Std 12.1 ±0.2 ? 4.2 ±1.5 11.7 53.6 17.8
mixed 7 5.90 5 Max Aleatoric 90.8 ±11.1 ? 66.7 ±27.8 67.5 93.6 73.1
medium 7 37.28 42 Ensemble Std 69.3 ±15.2 ? 17.3 ±6.3 28.0 95.4 94.9
med.-exp. 12 39.08 43 Max Aleatoric 105.8 ±1.2 ? 24.9 ±5.5 23.7 108.7 111.1

Walker2d

random 10 0.21 12 Ensemble Var 21.7 ±0.1 ? 13.6 ±1.4 13.6 37.3 7.0
mixed 13 2.48 47 Ensemble Std 65.8 ±17.4 ? 37.6 ±20.6 39.0 49.8 56.0
medium 8 5.28 14 Ensemble Std 79.7 ±2.3 ? -0.1 ±0.0 17.8 77.8 75.5
med.-exp. 12 0.99 37 Ensemble Std 97.1 ±4.9 ? 46.2 ±27.0 44.6 95.6 96.1

Average Score - - - - 65.2 ±5.4 ? 34.2 ±9.8 36.7 64.4 64.1

Testing the limits of current approaches. Next, we wish to further validate that our earlier theoret-
ical analysis can correspond to strong empirical performance gains by performing BO over the key
hyperparameters. Details on the BO algorithm are listed in App. G. We define our search space over
hyperparameters most related to uncertainty quantification:

• Penalty type (categorical): taking values over {Max Aleatoric, Max Pairwise Diff, LOO KL, LL
Var, Ensemble Std, Ensemble Variance}.

• Penalty scale λ (continuous): taking values over [1, 100].
• h (integer): taking values over {1, 2, . . . , 50}.
• Models N (integer): taking values over {1, 2, . . . , 15}.

Table 3 shows the optimal hyperparameters under BO. We note that Ensemble penalties are mainly
selected, corroborating the findings in our analysis that these are most correlated with model error. We
observe that Max Pairwise Diff is not chosen, likely because ensemble penalties are better correlated
with true dynamics error, and are more stable under tuning since their scaling changes less with
model number; we know that Max Pairwise Diff has very similar shape statistics to Ensemble Std.
(App. C). Finally, we also observe these solutions have lower performance variance than MOPO.

The selection of Max Aleatoric is also explainable; we observe it displays significantly lower skew
and kurtosis than all other metrics (App. C), while still maintaining strong rank correlation. We
also found that in all Hopper experiments, Ensemble Var. never achieved high performance, despite
the only difference with Ensemble Std. being its distributional shape. Interestingly, in HalfCheetah,
the opposite is true, with Ensemble Var. delivering significant performance gains. This implies
that distributional shape may play as important a role as calibration, and advocates the learning of
meta-parameters that control for this. Finally, in Walker2d, the well-grounded ensemble penalties
win in all cases. We note that values of the rollout horizon h and penalty weight λ differ greatly from
those chosen in the original MOPO paper, which chooses both from {1, 5}. Notably, the Hopper
and Walker2d environments can prefer a much longer rollout length and higher penalty weight, even
accounting for penalty magnitudes. Again this is backed up by our analysis; along a single rollout,
dynamics errors do not necessarily accumulate, they simply become more likely to occur. Therefore,
as long as we penalize errors appropriately, we can handle longer rollouts and, as a result, generate
more on-policy data. The number of models used to compute the uncertainty estimates can also
differ greatly from the standard 7. This again aligns with our findings that using more models for
uncertainty estimation can be beneficial, but is dependent on environment, data, and penalty.

Table 3 also demonstrates how these unconventional hyperparameter choices fare against state-of-
the-art offline MBRL algorithms. We spent considerable effort ensuring that our implementation
of MOPO matched the authors’ results using the same hyperparameters. We note the two are very
similar1, thereby allowing us to make a faithful comparison when modifying hyperparameters. Our
approach, labeled “Optimized†”, achieves statistically significant improvements over MOPO on 9

1There was a disparity in Walker2d-medium, but this was also noted in Ball et al. (2021)
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Figure 4: MOPO performance on the
Hopper medium-expert environment.

Environment MOPO† Optimized† CQL

pen
cloned 5.4 ±10.8 23.0 ±4.2 39.2
human 6.2 ±7.8 19.0 ±7.9 37.5
expert 15.1 ±9.7 50.6 ±10.5 107.0

hammer
cloned 0.2 ±0.1 5.2 ±1.5 2.1
human 0.2 ±0.0 0.5 ±0.8 4.4
expert 6.2 ±8.4 23.3 ±4.1 86.7

Table 4: Comparative evaluation on the D4RL Adroit
v0 dataset against Model Free CQL

out of 12 environments, validating our prior analysis over the key design choices. As an additional
bonus, and it is not the stated aim of this work, our approach achieves state-of-the-art performance
on five HalfCheetah and Walker2d environments by a considerable margin. Further notable results
include the Hopper mixed and Hopper medium-expert environments, in which we show we are able
to tune the MOPO-like method up to the performance of COMBO (Yu et al., 2021) and MOReL. The
importance of good uncertainty estimation and hyperparameter selection is shown visually in Fig. 4
where we improve MOPO performance by over 5× whilst obtaining a stable solution.

As aforementioned, we found our policies are more stable than previous works and consequently do
not need to cherry-pick high performing checkpoints2. Instead, we report the average performance
over our final 10 policy-improvement iterations. It should be noted that stability during training (Chan
et al., 2020) is paramount for successful policy deployment in offline RL, and we should therefore
prioritize hyperparameters that ensure this. We further confirm the reliability of our evaluation using
the rliable framework (Agarwal et al., 2021) in Fig. 1b, showing that the improvement over
MOPO (with 95% bootstrap CIs shaded) is clear in both MuJoCo and Adroit.

Results on Adroit dexterous hand manipulation tasks. We present results in Table 4 on the Adroit
Pen and Hammer environments which, as far as we are aware, have not previously been used in
offline MBRL, and present very different challenges to the locomotion tasks. These tasks feature
sparse rewards, real human demonstrations and narrow data distributions. We compare against the
current state-of-the-art model-free algorithm (CQL, Kumar et al. (2020)) and find that offline MBRL
can learn useful policies in the Adroit domains, providing the best performance seen so far on the
hammer-cloned setting. Best found penalties and hyperparameters are listed in App. J, and mirror
the findings in the locomotion experiments. We believe issues with the world model not accurately
capturing sparse rewards may account for any major performance difference. Our work is therefore
an important step towards bridging the gap between model-based and model-free methods for sparse
reward tasks, especially in the offline setting where exploration is not possible. We define MOPO to
be the best performance with the Max Aleatoric penalty, searching λ, h in {1, 5}2.

7 CONCLUSION

In this paper, we rigorously evaluated the impact of various key design choices on offline MBRL,
comparing for the first time a number of different uncertainty penalties used in the literature. By
proposing novel evaluation protocols, we have also gained key insights into the nature of uncertainty in
offline MBRL that we believe benefits the RL community. We demonstrated the impact of this analysis
by significantly improving upon existing offline MBRL by using vastly different key hyperparameters,
obtaining statistically significant performance improvements in almost all benchmarks.

Going forward, we are excited by developments in offline evaluation (Chen et al., 2021; Fu et al.,
2021b) to accurately assess agent performance without querying the environment. This would open
the door for population-based training methods (Jaderberg et al., 2017; Parker-Holder et al., 2020),
which have shown great success in online MBRL (Zhang et al., 2021). Furthermore, throughout the
paper we have highlighted potential areas of interest, from better understanding the generalization
provided by world models, through to the development of meta-parameters controlling penalty
distribution shape. We also highlight key issues in implementation in App. F as we strongly believe
this is a vital frontier for disentangling the effect of algorithmic innovations from code-level details.
Finally, Offline MBRL so far has only focused on determinstic environments; the ensemble penalties
we investigate support the modeling of stochastic dynamics, and the novel tools for analysis we
develop here can be readily applied to such settings.

2It is unclear what procedure is used in some prior work (indeed issues have been raised about this).
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A CALIBRATION

A.1 CHOICE OF CALIBRATION METRICS

We consider both the Spearman rank (ρ) correlation and Pearson bivariate (r) correlation. We believe
that the former better represents the actual statistical power of the metric compared to the true
distributional shift value, as it is robust to outliers and isn’t impacted by distributional shape (i.e.,
skewness, kurtosis). After all, we do not know if some ‘true’ |Gπ

M̂
(s, a)| is even linearly correlated

with the MSE values that we report, so naïvely comparing based on bivariate correlation may result
in incorrect assessment of penalty efficacy. However, we do also include the Pearson bivariate
correlation to gain insight into how the penalty distribution shape changes with design choices. For
instance, consider two metrics that have identical Spearman coefficients, but vastly different Pearson
coefficients–this implies they have significantly different distributional shapes whilst having the same
statistical ranking power. The two correlation coefficients have the further advantage that they are
unaffected by the scale of the uncertainty penalty, which can vary widely. Furthermore, algorithms
such as MOPO and MOReL will often scale the penalty by some coefficient λ and thus the raw
unscaled value is hard to interpret.

A.2 THE USE OF MSE AS THE GROUND TRUTH FOR DETERMINISTIC DYNAMICS

Following Yu et al. (2020), it is possible upper bound the expected performance ηM of a policy π in
the true MDP M under training in a world model MDP M̂ as follows:

ηM (π) ≥ E
(s,a)∼ρπ

P̂

[
R(s, a)− γ|Gπ

M̂
(s, a)|

]
(2)

where R(·, ·) is the reward function, ρπ
P̂

represents transitioning under the world model dynamics P̂
and policy π. The quantity |Gπ

M̂
(s, a)| can be upper-bounded by an integral probability metric (IPM):

|Gπ
M̂

(s, a)| ≤ sup
f∈F

∣∣∣Es′∼P̂ (s,a)[f(s′)]− Es′∼P (s,a)[f(s′)]
∣∣∣ =: dF (P̂ (s, a), P (s, a)) (3)

where F is some set of functions mapping S to R, and P is the dynamics under the true MDP M . As
noted in Yu et al. (2020), making assumptions over the functional form ofF induces different distance
measures. Restricting F to the set of 1-Lipschitz functions results in an IPM with the following form:

|Gπ
M̂

(s, a)| ≤ cW1(P̂ (s, a), P (s, a)) (4)

which is the 1-Wasserstein distance, where the constant c is the Lipschitz constant of the value function
V πM with respect to a norm || · ||. Recalling that the environments we evaluate have deterministic
dynamics (Todorov et al., 2012), this means the dynamics distributions P and P̂ in Eq. 4 are Dirac
delta functions. In this case, the 1-Wasserstein distance simply reduces to the 2-norm between some
‘true dynamics’ T (s, a) and the ‘estimated dynamics’ T̂ (s, a). This justifies the use of MSE between
the oracle dynamics (as detailed in Sec. 4.1 and App. D.1) and the world model dynamics as the
ground truth measure under which we assess calibration.
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A.3 OFFLINE DATASET TRANSFER CALIBRATION

We present the full calibration scatter plots described in Sec. 4.2. Concretely, we plot penalty values
on the y-axis, and ground-truth MSE on the x-axis. First, we present the transfer performance of
training sets onto offline datasets. Then, we present the results for all training datasets under the True
Model-Based experiment under the adversarial policies.

A.3.1 HALFCHEETAH

0 20 40
0

1

2

3

r: 0.398
: 0.754

Max Aleatoric

0 20 40
0

10

20

30

40

r: 0.495
: 0.768

Max Pairwise Diff.

0 20 40
0.0

0.5

1.0

1.5

2.0

r: 0.557
: 0.820

Ensemble Std.

0 20 40
0

5

10

r: 0.543
: 0.814

Ensemble Var.

0 20 40
0

2

4

6

8
1e7

r: 0.013
: 0.411

LL Var.

0 20 40
0

100

200

300

r: 0.060
: 0.541

KL LOO

Pe
na

lty

MSE

(a) Random transferred to Expert

0 50 100

2

4

6

r: 0.270
: 0.507

Max Aleatoric

0 50 100
0

20

40

60

r: 0.404
: 0.507

Max Pairwise Diff.

0 50 100
0

1

2

3

4

r: 0.463
: 0.575

Ensemble Std.

0 50 100
0

10

20

30

40

r: 0.453
: 0.565

Ensemble Var.

0 50 100
0.0

0.5

1.0

1e8

r: 0.366
: 0.491

LL Var.

0 50 100
0

100

200

r: 0.590
: 0.598

KL LOO

Pe
na

lty

MSE

(b) Medium transferred to Expert

0 5 10 15

2

4

6

r: 0.513
: 0.677

Max Aleatoric

0 5 10 15
0

10

20

30

r: 0.610
: 0.719

Max Pairwise Diff.

0 5 10 15
0

1

2

r: 0.611
: 0.750

Ensemble Std.

0 5 10 15
0

5

10

15

r: 0.639
: 0.755

Ensemble Var.

0 5 10 15
0

50000

100000

r: 0.248
: 0.126

LL Var.

0 5 10 15
0

10

20

30

r: 0.175
: -0.034

KL LOO

Pe
na

lty

MSE

(c) Medium transferred to Random

0 10 20

2

4

6

r: 0.492
: 0.697

Max Aleatoric

0 10 20
0

10

20

30

r: 0.622
: 0.734

Max Pairwise Diff.

0 10 20
0

1

2

r: 0.619
: 0.765

Ensemble Std.

0 10 20
0

5

10

15

r: 0.661
: 0.771

Ensemble Var.

0 10 20
0

10000

20000

30000

r: 0.206
: -0.035

LL Var.

0 10 20
0

10

20

30

r: 0.009
: -0.243

KL LOO

Pe
na

lty

MSE

(d) Expert transferred to Random

Figure 5: Scatter Plots showing HalfCheetah D4RL transfer tasks.
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A.3.2 HOPPER
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Figure 6: Scatter Plots showing Hopper D4RL transfer tasks.
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A.4 TRUE MODEL-BASED ERROR CALIBRATION
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Figure 7: Scatter Plots showing HalfCheetah D4RL true model-based error calibration.
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Figure 8: Scatter Plots showing Hopper D4RL true model-based error calibration.

A.5 ADDITIONAL LOG PROBABILITY CORRELATION ANALYSIS

Table 5 shows correlation between reward penalties and the negative log-likelihood of the true data
under the model in the Transfer experiments.

Table 5: Correlation statistics of penalties against model negative log-likelihood of the true data, averaged over
all datasets (i.e., Random through to Expert) showing ± 1 SD over 12 seeds. The best in each column is bolded.

Transfer
HalfCheetah Hopper

Penalty ρ r ρ r

Max Aleatoric 0.87±0.00 0.82±0.01 0.81±0.01 0.57±0.01
Max Pairwise Diff. 0.79±0.01 0.62±0.00 0.79±0.01 0.51±0.00
Ens. Std. 0.93±0.00 0.86±0.01 0.89±0.01 0.61±0.01
Ens. Var. 0.90±0.01 0.74±0.01 0.82±0.00 0.59±0.00
LL Var. 0.04±0.07 0.07±0.03 0.25±0.03 0.10±0.01
LOO KL -0.04±0.06 -0.02±0.04 0.08±0.03 0.05±0.01
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B FULL RESULTS INCREASING MODELS

B.1 PENALTY DISTRIBUTION

In this section we provide the full set of results showing the impact of increasing model count on the
distribution quantile statistics as introduced in Sec. 5.1. We show inter-quartile range and the median
(the latter being denoted by a black vertical line) of each penalty as a function of increasing model
number across all training domains and test settings. First, we present the transfer performance of all
training sets onto all offline datasets. Then, we present the results for all training datasets under the
True Model-Based experiment under the adversarial policies.

B.1.1 OFFLINE DATASET TRANSFER DISTRIBUTION
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Figure 9: Box Plots showing HalfCheetah D4RL transfer tasks.
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Figure 10: Box Plots showing Hopper D4RL transfer tasks.
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B.1.2 TRUE MODEL-BASED ERROR DISTRIBUTION
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Figure 11: Boxplots showing HalfCheetah D4RL true model-based error penalty distributions.
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Figure 12: Boxplots showing Hopper D4RL true model-based error penalty distributions.

22



Published as a conference paper at ICLR 2022

B.2 PENALTY PERFORMANCE

In this section, we provide the full set of results showing the impact of increasing model count on the
correlation statistics of each penalty, as described in Sec. 5.1. We show the Spearman and Pearson
correlation between penalty and ground truth MSE for all training datasets. First, we present the
transfer performance of all training sets onto all offline datasets. Then, we present the results for all
training datasets under the True Model-Based experiment under the adversarial policies.

B.2.1 HALFCHEETAH D4RL: TRANSFER
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Figure 13: HalfCheetah Spearman Statistics
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Figure 14: HalfCheetah Pearson Statistics
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B.2.2 HOPPER D4RL: TRANSFER
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Figure 15: Hopper Spearman Statistics
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Figure 16: Hopper Pearson Statistics
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B.2.3 HALFCHEETAH D4RL: TRUE MODEL-BASED ERROR
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Figure 17: HalfCheetah Spearman Statistics
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Figure 18: HalfCheetah Pearson Statistics

B.2.4 HOPPER D4RL: TRUE MODEL-BASED ERROR
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Figure 19: Hopper Spearman Statistics
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Figure 20: Hopper Pearson Statistics
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B.2.5 ALL AGGREGATED
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Figure 21: Aggregated True Model-Based correlation statistics over all datasets (i.e., Random through to
Expert); Left: HalfCheetah; Right: Hopper

C SKEWNESS AND KURTOSIS COMPARISONS

C.1 SKEWNESS AND KURTOSIS OVERALL

Here we present the 3rd and 4th order statistics (skew and kurtosis respectively) of each penalty,
illustrating that even with identical model counts, the shape statistics between penalties are vastly
different.

Table 6: Skew (γ1) and Kurtosis (γ2) statistics of all experiments averaged over all datasets (i.e., Random
through to Expert) using the MOPO Default of 7 models.

Transfer True Model-Based
HalfCheetah Hopper HalfCheetah Hopper

Penalty γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

Max Aleatoric -0.010 0.580 0.689 1.377 0.671 0.920 1.873 2.864
Max Pairwise Diff. 0.919 0.957 1.967 4.578 1.661 3.081 2.571 7.465
Ensemble Std. 0.794 0.806 2.136 6.560 1.656 3.178 2.739 9.061
Ensemble Var. 1.823 4.830 3.436 15.983 2.612 8.800 4.517 25.380
LL Var. 6.893 114.843 10.920 180.716 5.100 37.865 14.415 251.705
LOO KL 1.778 5.729 3.729 29.606 1.840 4.600 4.008 28.089

C.2 SKEW AND KURTOSIS SCALING WITH MODEL COUNT

We omit LL Var. and LOO KL due to the fact that their changes were so significant as to obfuscate
the changes of the more performant penalties.

We choose 7 models, as in Table 6, to act as our ’baseline’ (following the default MOPO setting),
and we measure the change in the skew and kurtosis relative to this, hence 7 models always has a
0% change in our graphs. For brevity, in the transfer experiments, we average over all ‘transferred
to’ environments, e.g., Random, Medium, etc.; the graph title refers to the data that the model was
trained on.

Again, we observe the environment and setting dependency of these metrics, sometimes having
increasing skewness and kurtosis with model count, and other times decreasing. This further justifies
using a ranking metric to compare penalties, as the overall penalty shape can vary hugely and
unpredictably w.r.t. co-dependent hyperparameters. We do observe however in the True Model-Based
experiments that ensemble standard deviation appears to be most robust to scaling with models. We
also observe that the Max Aleatoric penalty can change shape significantly w.r.t. model count, and no
penalties are fully immune to this. This further advocates the use of shape meta-parameters to control
for changing distribution properties when adjusting the number of models as a hyperparameter, as
well as selecting penalties that are relatively invariant to model count to make tuning easier.
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Figure 22: HalfCheetah Transfer.
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Figure 23: Hopper Transfer.
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Figure 24: HalfCheetah True Model-Based.
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Figure 25: Hopper True Model-Based.

30



Published as a conference paper at ICLR 2022

D FURTHER DETAILS ON TRUE MODEL-BASED EXPERIMENTS

D.1 METHODOLOGICAL DETAILS

We leverage the MuJoCo (Todorov et al., 2012) simulator to provide us with ground truth dynamics
that we can use to compare against our model predictions and penalties. This is done by providing
the state and action inputs given to the model to the simulator through the set_state method in
the simulator API. It must be noted that this method also requires an addition ‘displacement’ value
which is not modelled by the world models (nor is it provided in the D4RL data), however we found
in practice this did not affect the dynamics predicted by the simulator, and simply setting this to 0
was sufficient to generate ground truth predictions.

This makes it possible to provide the simulator the hallucinated model states, and provide a true proxy
to the dynamics discrepancy. We note that since the states are ‘hallucinated’ by the model, it might be
the case that they may not be admissible under the true environment, but in reality the simulator was
able to process almost any combination of state and action, barring settings that featured anomalously
large magnitudes. To handle such cases, we found it necessary to clip the model states to the range
[−10, 10].

In order to assess the permissibility of states, as well as measure the accuracy of the penalties as
OOD input detectors, we provide an alternative distance measure based on the distance away from
the training set. We use this measure for our analysis in Section 5.3, and is calculated as the distance
from the offline training dataset, which we define to be the 2-norm between a given state-action tuple
and its nearest point in the offline data, a similar metric to those used in recent works on imitation
learning (Dadashi et al., 2021). We describe this quantity henceforth as ‘Distribution Error’.

D.2 ON THE NATURE OF OOD DATA ALONG HALLUCINATED TRAJECTORIES

Here we discuss the nature of OOD data along a single hallucinated trajectory (in the model) in
offline MBRL, analyzing the inductive bias that some ‘error’ increases with increasing rollout
length in the model. We find that there is merit to this assumption, and show this in Fig. 26 for all
HalfCheetah and Hopper environments in D4RL. Here, we plot the median error at each time-step
across 30, 000 aggregated trajectories in the model. Note that for all plots, we re-normalize all
penalties by subtracting their mean and dividing by their standard deviation to facilitate comparison;
this normalization was also applied in the analysis performed in Fig. 1a. Concretely, each time step
corresponds to the normalized median value of 30, 000 data-points.
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Figure 26: Median True Model-Based Errors as a function of rollout timestep

We observe indeed that both median dynamics and distribution errors increase with increasing time
step in the model. The only real exception is HalfCheetah Medium-Expert, which we believe to be
due to our trained policy not being able to successfully exploit this environment.

The above analysis captures overall trends in the error over a large number of trajectories. However,
the way errors manifest during an individual rollout is not so straightforward. To illustrate this,
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observe Fig. 27, where we plot a random subset of 5 individual rollouts from the Hopper Medium-
Expert data we generated.
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Figure 27: Several Individual Ground Truth Rollouts in Hopper Medium-Expert

We observe that errors along any single trajectory tend to manifest as ‘spikes’, and that it is entirely
possible to recover from these, returning to either admissible dynamics, or parts of the state-action
space that have been seen in the data. This speaks to the nature of how we ought to penalize policies
for accessing regions of inaccuracy/uncertainty, and may justify a hybrid MOPO/MOReL approach,
whereby we penalize individual transitions along a trajectory, but do not stop rollouts early. Indeed,
this is similar to the approach taken in M2AC (non-stop), albeit they choose to ‘mask’ uncertain
transitions, not penalize them. We leave the design of such an algorithm to future work.

Finally, we address the issue of comparing OOD dynamics and inputs. As already observed in Fig. 27,
these two errors are not necessarily always the same, and oftentimes it is possible that one quantity is
large, whilst the other is small. We revisit Fig. 1a to explore this, now also plotting the Distribution
Error in Fig. 28.
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Figure 28: Comparing OOD dynamics and inputs on a Hopper Medium-Expert trajectory

We first speak to the inset annotated ‘1’. Here we observe that the transitions generated in fact closely
resemble the data that our model was trained on, however the predicted dynamics are incorrect, and
cause an aforementioned ‘spike’. This is the opposite of what is observed in the inset annotated
‘2’; where we actually predict accurate dynamics, however the resultant state-action tuples do not
closely resemble the data that our model was trained on. We generally observe that regions of high
Distribution Error tend to be preceded by ‘spikes’ pertaining to high Dynamics Error, and this present
an exciting avenue for future work understanding how these quantities are related.

D.3 ON THE DIVERSITY OF EXPLOITATIVE POLICIES

It is possible that training policies purely to exploit the world models may result in generating state-
action tuples that are low in diversity, as the policy could discover "pockets" in the model that provide
consistently high return. To prevent this, we train multiple policies inside the model from different
seeds, with the aim of inducing different modes of exploitation. To validate this induces diverse
trajectories in the world models, we visualize the state-action manifold using a t-SNE projection
(van der Maaten & Hinton, 2008) of: 1) the D4RL Hopper Mixed-Replay (which contains diverse
samples); 2) the imagined rollouts inside the model from the exploitative policies in Fig. 29. The
policies were trained to exploit a model that itself was trained on the Hopper Mixed-Replay data.
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Figure 29: t-SNE projection of 10,000 Hopper D4RL Medium-Replay and 10,000 exploitative Imagined policy
state-action tuples

We observe that the induced policies inside the model displays some overlap with the D4RL data,
but also resides in parts of the manifold where there is little coverage from the D4RL data, likely
representing regions of exploitation. Importantly, the exploitative WM trajectories display strong
state-action tuple diversity, comparable to that of the offline data it was trained on.

E USING METRICS AS OOD EVENT DETECTORS

E.1 MEASURING STATISTICS
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Figure 30: Hopper Medium-Expert True Model-Based Experiments; Left: Precision v.s. Recall against Ground
Truth; Middle: Higher Performing Penalties v.s. Ground Truth MSE in Imagined Rollout; Right: Lower
Performing Penalties v.s. Ground Truth MSE in Imagined Rollout

As noted previously, different penalties have varying scales and distribution profiles, so we need a
way of standardizing the method of assessment. Using our observation that errors manifest as ‘spikes’
during a rollout, we propose treating each penalty as a classifier. Concretely, our test set consists of
the ground truth data labeled by whether or not they exceed a certain percentile at a particular time
step. Each penalty may be then be treated as a ‘classifier’ by normalizing its range to lie in [0, 1]. We
can then use standard classification quality measures, such as AUC, to determine the effectiveness of
these penalties at capturing these spikes, whilst sidestepping the issue of the different distributional
profiles identified previously.

Fig. 30 shows how our proposed method may be used to compare the effectiveness of each metric at
capturing OOD events. In the figure, we plot a single rollout in the model, and the resultant ground
truth MSE between the predicted next state and the true next state in black. We then superimpose
the 90th, 95th and 99th percentile MSEs across the entire imagined trajectories onto the figure in
gray dashed lines. To construct our OOD labels, we label any point below the percentile line as being
‘False’, and any point above that line as being ‘True’. Finally, we normalize the uncertainty metrics as
previously described into values in the range [0, 1], allowing us to construct precision-recall graphs
and calculate classifier statistics.
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E.2 PRECISION RECALL CURVES

In this section we present the Precision-Recall curves described in App. E.1.
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Figure 31: Precision Recall curves on ground truth data.
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F IMPLEMENTATION DETAILS

This paper extensively discusses key hyperparameters specific to current offline MBRL algorithms.
However, there are significant code-level implementation details which are often critical for strong
performance and make it hard to disambiguate between algorithmic and implementation improve-
ments. Worryingly, many of these details are not mentioned in their respective papers, or are different
between the authors’ code and paper. We detail clear examples of this below. We believe further
investigation of these code-level implementation details represents important future work, as has
already been done for policy gradients (Engstrom et al., 2020; Andrychowicz et al., 2021). Indeed – it
is unclear if the improvement of MOReL over MOPO is due to its different P-MDP formulation, or if
it is successful in spite of this formulation, due to a superior policy optimization strategy or dynamics
model design. We believe that this paper takes a significant first step in tackling this issue by directly
comparing a number of key design choices, and understanding their individual impact. Now we
summarize key differences between the paper and code for the MOPO and MOReL algorithms which
we compare against that are crucial to achieve the same reported performance.

In MOPO,

• Each layer in the model neural network has a different level of weight-decay

• The authors’ code uses different objectives for training (log-likelihood) and validation (MSE).

• The authors use elites, but only for next state prediction (as discussed previously).

In MOReL,

• There is a difference in the authors’ code about how the penalty threshold is calculated and tuned,
and isn’t provided as a hyperparameter in the appendix.

• The absorbing HALT state does not appear in the authors’ code.

• The negative halt penalty appears significantly different between code and paper.

• There is a minimum trajectory steps parameter (hard-coded to 4) not mentioned in the paper.

• The reward function appears to be hard-coded in the authors’ implementation, not learned as stated
in the paper.

• The policy architecture is different in the authors’ code (64,64 hidden layers) and the paper (32,32
hidden layers)

• It is not clear when the optional behavior cloning initialization step is applied.

G HYPERPARAMETERS AND EXPERIMENT DETAILS

The D4RL (Fu et al., 2021a) codebase and datasets used for the empirical evaluation is available
under the CC BY 4.0 Licence. As stated in the main text, we choose to use ‘v0’ experiments as these
are more challenging for Hopper due to having low return trajectories (Kostrikov et al., 2021), and
we clearly state when other benchmarks use the ‘v2’ experiments, which have offline trajectories with
higher returns on Hopper.

The remaining hyperparameters for the MOPO algorithm that we do not vary by Bayesian Opti-
mization were taken from the original MOPO paper (Yu et al., 2020), apart from we fix the number
of policy epochs/iterations to 1,000 for all experiments. This means our implementation uses
the same probabilistic dynamics models (with unchanged hyperparameters) and policy optimizer
(SAC, Haarnoja et al. (2018)) as MOPO, differing from MOReL, which uses Natural Policy Gradient
(Kakade, 2002).

The hyperparameters used for the BO algorithm, CASMOPOLITAN, are listed in Table 7. We use the
batch-mode of CASMOPOLITAN, where multiple hyperparameters settings are proposed and evaluated
concurrently.

Each BO iteration is run for 300 epochs on a single seed, and the full optimization over an offline
dataset took ~200 hours on a NVIDIA GeForce GTX 1080 Ti GPU taken up predominantly by
MOPO training.
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Table 7: CASMOPOLITAN Hyperparameters

Parameter Value
Number of parallel trials 4

Number of random initializing points 20
ARD False

Acquisition Function Thompson Sampling
Global BO True

Kernel CoCaBo Kernel (Ru et al., 2020)

Unless specified otherwise, plots and reported statistics are completed with 7 models in the ensemble,
as this is the number chosen in the original MOPO paper used with the Max Aleatoric penalty.

H RLIABLE FRAMEWORK FOR PERFORMANCE EVALUATION

Throughout this work, we choose to adopt the rliable framework introduced in Agarwal et al.
(2021) to evaluate the performance of our approaches. rliable advocates for computing aggregate
performance statistics and probability of improvement across many tasks in a benchmark suite; indeed
we take this approach when reporting the values in the analysis performed in Sections 4 and 5. This
is important when the number of tasks become large, and also prevents outliers from dominating
mean statistics. Furthermore, this allows us to make clear statements about improvements given the
relatively low number of seeds that are used in deep RL; indeed, Agarwal et al. (2021) show that
even using high seed counts does not ameliorate the variance issues experienced when training such
algorithms. For normalization, we use the standard D4RL return scaling.

I EVALUATION USING AUTOMATIC CONSTRAINT TUNING

We show the full tabulated results from Sec. 6 with statistical significance using the rliable
framework in Table 8, using the ‘Probability of Improvement’ metric in Agarwal et al. (2021).

To evaluate our claims in Sections 4 and 5 without needing to laboriously tune the penalty weight λ
per environment, we employ an automatic penalty tuning scheme, analogous to the automatic entropy
tuning used in Haarnoja et al. (2018). Concretely, given a constraint value Λ, at each epoch we
minimize:

J(λ) = Est,at∼D [log λ(Λ− λ · u(st,at))] (5)

We start from an initial weight λ = 1. We observe that the penalty weight found by automatic tuning
tends to converge within the first 50 epochs and then remains stable throughout training.

Table 8: Improvement over grid-searched MOPO through restricted hyperparameter choices (e.g., one single
choice, or an arg max between two) on the D4RL MuJoCo benchmark. The single and two setup approaches
both use the Ensemble Std. penalty and N = 10.

Algorithm Average Score P[Improvement over MOPO]

MOPO (default hyperparameters) 34.2 -
Single setup: (h = 20, Λ = 1) 49.0 (+43%) 73.96%
Two setups: arg max{(h = 10, Λ = 0.5), (h = 20, Λ = 1)} 57.8 (+69%) 80.20%
Optimized MOPO (ours, Table 3) 65.2 (+91%) 89.06%
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J BEST FOUND ADROIT HYPERPARAMETERS

We present the best found hyperparameters under our BO procedure for the D4RL Adroit tasks in
Table 4. We see similar trends as in our main evaluation in Table 3 favoring higher rollout lengths
and the Ensemble penalties.

Table 9: Best discovered hyperparameters using BO for Adroit

Environment Discovered Hyperparameters
N λ h Penalty

pen
cloned 10 6.64 12 Ensemble Std
human 11 0.96 37 Ensemble Var
expert 7 4.56 5 Max Aleatoric

hammer
cloned 10 0.21 12 Ensemble Var
human 13 2.48 47 Ensemble Std
expert 12 0.99 37 Ensemble Std
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