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Abstract

We investigate whether Differentially Private SGD offers better privacy in practice than what
is guaranteed by its state-of-the-art analysis. We do so via novel data poisoning attacks, which
we show correspond to realistic privacy attacks. While previous work (Ma et al., arXiv 2019)
proposed this connection between differential privacy and data poisoning as a defense against data
poisoning, our use as a tool for understanding the privacy of a specific mechanism is new. More
generally, our work takes a quantitative, empirical approach to understanding the privacy afforded
by specific implementations of differentially private algorithms that we believe has the potential to
complement and influence analytical work on differential privacy. An open-source implementation
of our algorithms can be found at https://github.com/jagielski/auditing-dpsgd.

1 Introduction

Differential privacy [DMNS06] has become the de facto standard for guaranteeing privacy in
machine learning and statistical analysis, and is now being deployed by many organizations including
Apple [TVV+17], Google [EPK14, BEM+17, PSM+18], and the US Census Bureau [HMA+17]. Now
that differential privacy has moved from theory to practice, there has been considerable attention on
optimizing and evaluating differentially private machine learning algorithms, notably differentially
private stochastic gradient descent (henceforth, DP-SGD) [SCS13, BST14, ACG+16], which is now
widely available in TensorFlow Privacy [Goo]. DP-SGD is the building block for training many
widely used private classification models, including feed-forward and convolutional neural networks.

Differential privacy gives a strong worst-case guarantee of individual privacy: a differentially
private algorithm ensures that, for any set of training examples, no attacker, no matter how powerful,
can learn much more information about a single training example than they could have learned had
that example been excluded from the training data. The amount of information is quantified by
a privacy parameter ε.1 Intuitively, a smaller ε means stronger privacy protections, but leads to
lower accuracy. As such there is often pressure to set this parameter as large as one feels still gives
a reasonable privacy guarantee, and relatively large parameters such as ε = 2 are not uncommon.
However, this guarantee is not entirely satisfying, as such an algorithm might allow an attacker to
guess a random bit of information about each training example with approximately 86% accuracy.

∗Authors ordered by contribution.
1There are several common variants of differential privacy [DKM+06, DR16, BS16, Mir17, BDRS18, DRS19] that

quantify the influence of a single example in slightly different ways, sometimes using more than one parameter. For
this high-level discussion, we focus on the single, primary parameter ε.
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As such there is often a gap between the strong formal protections promised by differential privacy
and the specific quantitative implications of the choice of ε in practice.

This state-of-affairs is often justified by the fact that our analysis of the algorithm is often
pessimistic. First of all, ε is a parameter that has to be determined by careful analysis, and often
existing theoretical analysis is not tight. Indeed a big part of making differentially private machine
learning practical has been the significant body of work giving progressively more refined privacy
analyses specifically for DP-SGD [ACG+16, DRS19, MTZ19, YLP+19], and for all we know these
bounds on ε will continue to shrink. Indeed, it is provably intractable to determine the tightest
bound on ε for a given algorithm [GM18]. Second, differential privacy is a worst-case notion, as
the mechanism might have stronger privacy guarantees on realistic datasets and realistic attackers.
Although it is plausible that differentially private algorithms with large values of ε provide strong
privacy in practice, it is far from certain, which makes it difficult to understand the appropriate
value of ε for practical deployments.

1.1 Our Contributions

Auditing DP-SGD. In this paper we investigate the extent to which DP-SGD,2 does or does not
give better privacy in practice than what its current theoretical analysis suggests. We do so using
novel data poisoning attacks. Specifically, our method starts with a dataset D of interest (e.g. Fashion-
MNIST) and some algorithm A (e.g. DP-SGD with a specific setting of hyperparameters), and
produces a small poisoning set S of k points and a binary classifier T such that T distinguishes the
distribution A(D) from A(D ∪ S) with significant advantage over random guessing. If A were ε-DP,
then T could have accuracy at most exp(εk)/(1 + exp(εk)), so if we can estimate the accuracy of T
we can infer a lower bound on ε. While previous work [MZH19] proposed to use this connection
between differential privacy and data poisoning as a defense against data poisoning, our use in this
context of auditing the privacy of DP-SGD is new.

Specifically, for certain natural choices of hyperparameters in DP-SGD, and standard benchmark
datasets (see Figure 2), our attacks give lower bounds on ε that are approximately 10x better than
what we could obtain from previous methods, and are within approximately 10x of the worst-case,
analytically derived upper bound. For context, previous theoretical improvements to the analysis
have improved the worst-case upper bounds by factors of more than 1000x over the näıve analysis,
and thus our results show that we cannot hope for similarly dramatic gains in the future.

Novel Data Poisoning Attacks. We find that existing data poisoning attacks, as well as
membership inference attacks proposed by prior work, have poor or trivial performance not only
against DP-SGD, but even against SGD with gradient clipping (i.e. rescaling gradients to have
norm no larger than some C). Gradient clipping is an important part of DP-SGD, but does not
provide any formal privacy guarantees on its own. Thus, we develop a novel data poisoning attack
that is more robust to gradient clipping, and also performs much better against DP-SGD.

Intuitively, data poisoning attacks introduce new points whose gradients will change the model
in a certain direction, and the attack impact increases when adding poisoning points of larger
gradients. Existing attacks modify the model in a random direction, and have to push far enough
that the original distribution on model parameters and the new distribution become distinguishable.
To be effective, these attacks use points which induce large gradients, making the attack sensitive to
gradient clipping. On the other hand, our attack improves by finding the direction where the model
parameters have the lowest variance, and select poisoning points that modify the model in that

2Although our methods are general, in this work we exclusively study the implementation and privacy analysis of
DP-SGD in TensorFlow Privacy [Goo].
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direction. Therefore, we achieve the same effect of model poisoning with poisoning points of smaller
gradients, thereby making the attack more robust to clipping.

The Role of Auditing in DP. More generally, our work takes a quantitative, empirical approach
to auditing the privacy afforded by specific implementations of differentially private algorithms.
We do not advocate trying to definitively measure privacy of an algorithm empirically, since it’s
hopeless to try to anticipate all future attacks. Rather, we believe this empirical approach has the
potential to complement and influence analytical work on differential privacy, somewhat analogous
to the way cryptanalysis informs the design and deployment of cryptography.

Specifically, we believe this approach can complement the theory in several ways:

• Most directly, by advancing the state-of-art in privacy attacks, we can either demonstrate that
a given algorithm with a given choice of parameters is not sufficiently private, or give some
confidence that it might be sufficiently private.

• Establishing strong lower bounds on ε gives a sense of how much more one could hope to get
out of tightening the existing privacy analysis.

• Observing how the performance of the attack depends on different datasets, hyperparameters,
and variants of the algorithm can identify promising new phenomena to explore theoretically.

• Producing concrete privacy violations can help non-experts interpret the concrete implications
of specific choices of the privacy parameter.

1.2 Related Work

DP-SGD. Differentially private SGD was introduced in [SCS13], and an asymptotically optimal
analysis of its privacy properties was given in [BST14]. Notably Abadi et al. [ACG+16] gave
greatly improved concrete bounds on its privacy parameter, and showed its practicality for training
neural networks, making DP-SGD one of the most promising methods for practical private machine
learning. There have been several subsequent efforts to refine the privacy analysis of this specific
algorithm [MTZ19, DRS19, YLP+19]. A recent work [HT19] gave a heuristic argument that SGD
itself (without adding noise to the gradients) satisfies differential privacy, but even then the bounds
on ε are quite large (e.g. ε = 13.01) for most datasets.

Privacy Attacks. Although privacy attacks have a very long history, the history of privacy attacks
against aggregate statistical information, such as machine learning models, goes back to the seminal
work of Dinur and Nissim [DN03] on reconstruction attacks. A similar, but easier to implement
type of attack, membership inference attacks, was first performed by Homer et al. [HSR+08], and
theoretically analyzed in [SOJH09, DSS+15]. Shokri et al. [SSSS17] and Yeom et al. [YGFJ18] gave
black-box membership inference algorithms for complex machine learning models. Membership
inference attacks are compelling because they require relatively weak assumptions, but, as we show,
state-of-the-art membership inference attacks lead to quantitatively weak privacy violations.

More directly related to our work, privacy attacks were recently used by Jayaraman and
Evans [JE19] to understand the concrete privacy leakage from differentially private machine learning
algorithms, specifically DP-SGD. However, the goal of their work is to compare the privacy guarantees
offered by different variants of differential privacy, rather than to determine the level of privacy
afforded by a given algorithm. As such, their attacks are quantitatively much less powerful than
ours (as we show in Figure 2), and are much further from determining the precise privacy guarantees
of DP-SGD.
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Differential Privacy and Data Poisoning. Ma et al. [MZH19] and Hong et al. [HCK+20]
evaluate the effectiveness of data poisoning attacks on differentially private machine learning
algorithms. Ma et al. consider both the output perturbation and objective perturbation algorithms
for learning ridge regression and logistic regression models, proposing attacks on differentially
private algorithms, and also argue that differentially privacy can serve as a defense for poisoning
attacks. Hong et al. propose differential privacy as a defense for poisoning attacks, showing that
DP-SGD performs effectively at defending against existing poisoning attacks in the literature. While
differential privacy provides a provable defense for poisoning attacks, our intuition is that the
strong poisoning attacks we design allow us to measure a lower bound on the privacy offered by
differentially private algorithms.

Automated Discovery of Privacy Parameters. Two works have focused on automatically
discovering (upper or lower bounds on) privacy parameters. [GM18] showed that determining
the exact privacy level using black-box access to the algorithm is prohibitively expensive. In the
white-box setting, Ding et al. [DWW+18] used a clever combination of program analysis and random
sampling to identify violations of ε-DP, although their methods are currently limited to simple
algorithms. Moreover the violations of DP they identify may not correspond to realistic attacks.

2 (Measuring) Differential Privacy

2.1 Differential Privacy Background

We begin by outlining differential privacy and one of its relevant properties: group privacy. We
consider machine learning classification tasks, where a dataset consists of many samples from some
domain D = X × Y, where X is the feature domain, and Y the label domain. We say two datasets
D0, D1 differ on k rows if we can replace at most k elements from D0 to produce D1.

Definition 2.1 ([DMNS06]). An algorithm A : D 7→ R is (ε, δ)-differentially private if for any two
datasets D0, D1 which differ on at most one row, and every set of outputs O ⊆ R:

Pr[A(D0) ∈ O] ≤ eε Pr[A(D1) ∈ O] + δ, (1)

where the probabilities are taken only over the randomness of A.

Lemma 1 (Group Privacy). Let D0, D1 be two datasets differing on at most k rows, A is an
(ε, δ)-differentially private algorithm, and O an arbitrary output set. Then

Pr[A(D0) ∈ O] ≤ ekε Pr[A(D1) ∈ O] + ekε−1
eε−1 · δ. (2)

Group privacy will give guarantees for poisoning attacks that introduce multiple points.

DP-SGD. The most prominent differentially private mechanism for training machine learning
models is differentially private stochastic gradient descent (DP-SGD) [SCS13, BST14, ACG+16].
DP-SGD makes two modifications to the standard SGD procedure: clipping gradients to a fixed
maximum norm C, and adding noise to gradients with standard deviation σC, for a given σ, as
shown in Algorithm 1. Given the hyperparameters – clipping norm, noise magnitude, iteration
count, and batch size – one can analyze DP-SGD to conclude that it satisfies (ε, δ)-differential
privacy for some parameters ε, δ ≥ 0.
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Algorithm 1: DP-SGD

Data: Input: Clipping norm C, noise magnitude σ, iteration count T , batch size b, dataset D,
initial model parameters θ0, learning rate η

For i ∈ [T ]
G = 0
For (x, y) ∈ batch of b random elements of D

g = ∇θ`(θi; (x, y))
G = G+ b−1g ·min(1, C||g||−12 )

θi = θi−1 − η(G+N (0, (Cσ)2I))
Return θT

2.2 Statistically Measuring Differential Privacy

In this section we describe our main statistical procedure for obtaining lower bounds on the privacy
parameter for a given algorithm A, which functions differently from the membership inference attack
used in prior work ([SSSS17, JE19] and described in Appendix D). Here, we describe the procedure
generally, in the case where δ = 0; in Appendix A, we show how to adapt the procedure for δ > 0,
and in Section 3, we discuss how we instantiate it in our work. Given a learning algorithm A,
we construct two datasets D0 and D1 differing on k rows, and some output set O. We defer the
discussion of constructing D0, D1, and O to Section 3. We also wish to bound the probability that
we incorrectly measure εLB by a small value α. From Equation (2), observe that by estimating the
quantities p0 = Pr[A(D0) ∈ O] and p1 = Pr[A(D1) ∈ O], we can compute the largest εLB such that
Equation (2) holds. With δ = 0, this simplifies to εLB = ln(p0/p1). This serves as an estimate of
the leakage of the private algorithm, but requires estimating p0 and p1 accurately.

For an arbitrary algorithm, it’s infeasible to compute p0, p1 precisely, so we rely on Monte Carlo
estimation, by training some fixed T number of times. However, this approach incurs statistical
uncertainty, which we correct for by using Clopper Pearson confidence intervals [CP34]. That
is, to ensure that our estimate εLB holds with probability > 1 − α, we find a Clopper Pearson
lower bound for p1 that holds with probability 1− α/2, and an upper bound for p0 holding with
probability 1− α/2. Qualitatively, we can be confident that our lower bound on privacy leakage ε′

holds with probability 1−α. This procedure is outlined in Algorithm 2, and we prove its correctness
in Theorem 2.

Algorithm 2: Empirically Measuring ε

Data: Algorithm A, datasets D0, D1 at distance k, output set O, trial count T , confidence
level α

ct0 = 0, ct1 = 0
For i ∈ [T ]

If A(D0) ∈ O ct0 = ct0 + 1
If A(D1) ∈ O ct1 = ct1 + 1

p̂0 = ClopperPearsonLower(ct0, T, α/2)
p̂1 = ClopperPearsonUpper(ct1, T, α/2)
Return εLB = ln(p̂0/p̂1)/k

Theorem 2. When provided with black box access to an algorithm A, two datasets D0 and D1

differing on at most k rows, an output set O, a trial number T and statistical confidence α, if
Algorithm 2 returns εLB , then, with probability 1− α, A does not satisfy ε′-DP for any ε′ < εLB .

We stress that when we say εLB is a lower bound with probability 1− α, this is only over the
randomness of the Monte Carlo sampling, and is not based on any modeling or assumptions. We
can always move our confidence closer to 1 by taking T larger.
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Figure 1: The distribution of gradients from an iteration of DP-SGD under a clean dataset (blue
ellipse) and a poisoned dataset (red ellipse). The right pair depicts traditional backdoors while the
left pair depicts our backdoors. Our attack pushes in the direction of least variance, so is impacted
less by gradient clipping, which is indicated by the two distributions overlapping less.

Proof of Theorem 2. First, the guarantee of the Clopper-Pearson confidence intervals is that, with
probability at least 1 − α, p̂0 ≤ p0 and p̂1 ≥ p1, which implies p0/p1 ≥ p̂0/p̂1. Second, if A is
ε-DP, then by group privacy we would have p0/p1 ≤ exp(kε), meaning A is not ε′-DP for any
ε′ < 1

k ln(p0/p1). Combining the two statements, A is not ε′ for any ε′ < 1
k ln(p̂0/p̂1) = εLB .

The εLB reported by Algorithm 2 has two fundamental upper bounds, the provable εth , and
an upper bound, εOPT (T, α), imposed by Monte Carlo estimation. The first upper bound is
natural: if we run the algorithm on some A for which the ε we can prove is εth = 1, then
εLB ≤ εth = 1. To understand εOPT (T, α), suppose we run 500 trials, and desire α = 0.01. The
best possible performance is if we get perfect inference accuracy and k = 1, where ct0 = 500 and
ct1 = 0. The Clopper Pearson confidence interval produces p̂0 = 0.989, p̂1 = 0.011, which gives
εLB = 4.54/k = 4.54. Then, with 99% probability, the true ε is at least 4.54, and εOPT (T, α) = 4.54.

We remark that the above procedure only demonstrates that A cannot be strictly better than
(εLB , 0)-DP, but allows for it to be (εLB/2, δ)-DP for very small δ. However, in our work, p̂0, p̂1 turn
out never to be too close to 0, so these differences have little effect on our findings. In Appendix A,
we formally discuss how to modify this algorithm for (ε, δ)-DP for δ > 0. We also show when we
can increase εLB by considering the maximum upper bounds of the original output set O and its
complement OC .

3 Poisoning Attacks

We now show how to use poisoning attacks to run Algorithm 2. Intuitively, we begin with a dataset
D0 and replace k rows with poisoning points to form D1; we then use the impact of poisoning as
an output set O. We start with existing backdoor attacks [GDGG17], and then propose a more
effective clipping-aware poisoning attack.

3.1 Poisoning Background

In a poisoning attack, an adversary replaces k data points from a training dataset D of n points.
The poisoned training dataset is provided as input to the training algorithm, which releases a model
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Algorithm 3: Baseline Backdoor Poisoning Attack and Test Statistic (Section 3.1)

Data: Dataset X,Y , poison size k, perturbation function Pert , target class yp
Function Backdoor(X,Y, k,Pert , yp):

Xp = GetRandomRows(X, k)
X ′p = Pert(Xp)

Xp
tr = ReplaceRandomRows(X,X ′p)

Y p
tr = ReplaceRandomRows(Y, yp)

return D0 = (X,Y ), D1 = (Xp
tr, Y

p
tr)

Data: Model f , dataset (X,Y ), pert. function Pert , target class yp, loss function `, threshold
Z

Function BackdoorTest(f,X, Y,Pert , yp, `, Z):
Xp = Pert(X)
If
∑

xp∈Xp
`(f ; (xp, yp) > Z Return Backdoored

Return Not Backdoored

Algorithm 4: Clipping-Aware Backdoor Poisoning Attack and Test Statistic (Section 3.2)

Data: Dataset X,Y , pretrained model f , poison size k, dataset dimension d, norm m
Function ClipBkd(X,Y, k, f,m):

U,D, V = SVD(X) . Singular value decomposition
xp = mVd . Vd is the singular vector for smallest singular value
yp = arg mini f(xp) . Pick class maximizing gradient norm
Xp
tr = ReplaceRandomRows(X, [xp] ∗ k) . Add poisoning point k times

Y p
tr = ReplaceRandomRows(Y, [yp] ∗ k) . Add targeted class k times

return D0 = (X,Y ), D1 = (Xp
tr, Y

p
tr)

Data: Model f , Poison Data xp, yp, Threshold Z
Function ClipBkdTest(f, xp, yp, Z):

If (f(xp)− f(0d)) · yp > Z Return Backdoored
Return Not Backdoored

f that minimizes a loss function L(f,D) on its given dataset D.
We focus on a specific type of poisoning attack, called a backdoor attack [GDGG17]. In

a backdoored model, the performance on natural data is maintained, but, by adding a small
perturbation to a data point x into Pert(x), the adversary changes the predicted class of the perturbed
data. These attacks have been developed for image datasets. In the original attack [GDGG17],
described in Algorithm 3, the perturbation function Pert(·) adds a pattern in the corner of an image.
The poisoning attack takes natural data (x, y), perturbs the image to Pert(x), and changes the class
to some yp. The objective is to decrease the loss on (Pert(x), yp) values from the perturbed test set.

3.2 Clipping-Aware Poisoning

DP-SGD makes two modifications to the learning process to preserve privacy: clipping gradients
and adding noise. Clipping provides no formal privacy on its own, but many poisoning attacks
perform significantly worse in the presence of clipping. Indeed, the basic backdoor attack from
Section 3.1 results in a fairly weak lower bound of at most εLB = 0.11 using the Fashion-MNIST
dataset, even with no added noise (which has an εth =∞). To improve this number, we must make
the poisoning attack sufficiently robust to clipping.

To understand existing backdoor attacks’ difficulty with clipping, consider clipping’s impact on
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logistic regression. The gradient of model parameters w with respect to a poisoning point (xp, yp) is

∇w`(w, b;xp, yp) = `′(w · xp + b, yp)xp.

Standard poisoning attacks, including the backdoor attack from Section 3.1, focus on increasing
|`′(w · xp + b, yp)|; by doubling this quantity, if |xp| is fixed, half as many poisoning points are
required for the same effect. However, in the presence of clipping, this relationship is broken.

To be more effective in the presence of clipping, the attack must produce not only large
gradients, but distinguishable gradients. That is, the distribution of gradients arising from poisoned
and cleaned data must be significantly different. To analyze distinguishability, we consider the
variance of gradients, illustrated in Figure 1, and seek a poisoning point (xp, yp) minimizing
Var (x,y)∈D[∇w`(w, b;xp, yp) · ∇w`(w, b;x, y)]. This is dependent on the model parameters at a
specific iteration of DP-SGD: we circumvent this issue by minimizing the following upper bound,
which holds for all models (for logistic regression, |`′(w · x+ b; y)| ≤ 1):

Var (x,y)∈D
[
`′(w · xp + b, yp)xp · `′(w · x+ b, y)x

]
≤ Var (x,y)∈D[xp · x].

We can minimize this variance with respect to the poisoning point xp by using the singular
value decomposition: selecting xp as the singular vector corresponding to the smallest singular
value (i.e. the direction of least variance), and scale xp to a similar norm to the rest of the dataset.
We select yp to be the smallest probability class on xp. We then insert k copies of the poisoning
point (xp, yp). We call this approach ClipBKD, detailed in Algorithm 4. We prove in Appendix B
that when we run ClipBKD (modified for regression tasks) to estimate the privacy of the output
perturbation algorithm, we obtain εLB within a small factor of the upper bound εth , giving evidence
that this attack is well suited to our application in differential privacy. In Appendix C, we describe
how to adapt ClipBKD to transfer learning from a pre-trained model.

For both standard and clipping-aware backdoors, we generate D0, D1 with a given poisoning
size k, using functions Backdoor or ClipBkd, respectively. Then the test statistic is whether the
backdoored points are distinguishable by a threshold on their loss (i.e., output set O is whether
BkdTest or ClipBkdTest return “Backdoored”). We first run an initial phase of T trials to find
a good threshold Z for the test functions. We then run another T trials in Algorithm 2 to estimate
p̂0 and p̂1 based on either the BkdTest or the ClipBkdTest test statistic.

4 Experiments and Discussion

4.1 Experimental Setup

We evaluate both membership inference (MI, as used by [YGFJ18] and [JE19] and described in
Appendix D) and our algorithms on three datasets: Fashion-MNIST (FMNIST), CIFAR10, and
Purchase-100 (P100). For each dataset, we consider both a logistic regression (LR) model
and a two-layer feedforward neural network (FNN), trained with DP-SGD using various
hyperparameters:

FMNIST [XRV17] is a dataset of 70000 28x28 pixel images of clothing from one of 10 classes,
split into a train set of 60000 images and a test set of 10000 images. It is a standard benchmark
dataset for differentially private machine learning. To improve training speed, we consider a
simplified version, using only classes 0 and 1 (T-shirt and trouser), and downsample so each class
contains 3000 training and 1000 testing points. CIFAR10 [Kri09] is a harder dataset than FMNIST,
consisting of 60000 32x32x3 images of vehicles and animals, split into a train set of 50000 and a
test set of 10000. For training speed, we again take only class 0 and 1 (airplane and automobile),
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Dataset Epochs Learning Rate Batch Size `2 Regularization

FMNIST 24 0.15 250 0
CIFAR10 20 0.8 500 0

P100 100 2 250 10−4 / 10−5

Table 1: Training details for experiments in Section 4. P100 regularization is 10−5 for logistic
regression and 10−4 for neural networks, following [JE19].

making our train set contain 10000 samples, and the test set 2000 samples. When training on
CIFAR10, we follow standard practice for differential privacy and fine-tune the last layer of a
model pretrained nonprivately on the more complex CIFAR100, a similarly sized but more complex
benchmark dataset [PCS+20]. P100 [SSSS17] is a modification of a Kaggle dataset [Pur], with
200000 records of 100 features, and 100 classes. The features are purchases, and the classes are user
clusters. Following [JE19], we subsample the dataset so it has 10000 train records and 10000 test
records.

Our techniques are general, and could be applied to any dataset-model pair to identify privacy
risks for DP-SGD. Examining these six dataset-model pairs demonstrates that our technique can be
used to identify new privacy risks in DP-SGD, and a comprehensive empirical study is not our focus.

4.1.1 Implementation Details.

Model Size. The two-layer feedforward neural networks all have a width of 32 neurons. For
CIFAR10, the logistic regression model and feedforward neural network are added on top of the
pretrained convolutional neural network.

Computing Thresholds. In order to run Algorithm 2, we need to specify D0, D1 and O. We’ve
described how to use poisoning to compute D0, D1, and how the test statistics for these attacks are
constructed, assuming a known threshold. To produce this threshold, we train 500 models on the
unpoisoned dataset and 500 models on the poisoned dataset, and identify which of the resulting
1000 thresholds produces the best εLB , using Algorithm 2.

Training Details. We discuss the details of training in Table 1. We selected these values to ensure
a good tradeoff between accuracy and ε, and selecting `2 regularization for P100 based on [JE19].

4.2 Results and Discussion

Figure 2 presents a direct comparison of the privacy bounds produced by ClipBKD (our attack),
the standard backdoor attack, and MI. As standard backdoor attacks only exist for images, we only
report results on them on FMNIST and CIFAR10. The pattern we choose for backdoor attacks is
a 5x5 white square in the top-left corner of an image. For ClipBKD, we use T = 500 trials and
confidence level α = 0.01 (i.e., our Monte Carlo estimates hold with 99% confidence) and report
the best result from k = 1, 2, 4, 8 poisoning points. Results for MI use 1000 samples, and average
over 10 trained models. For context, we display the best theoretical upper bound on εth and also
εOPT (500, 0.01), which is the best value of εLB that we could hope to produce using T trials and
confidence level α.

For every dataset and model, we find that ClipBKD significantly outperforms MI, by a factor of
2.5x–1500x. As a representative example, for εth = 4 on Purchase-100 with 2-layer neural networks,
ClipBKD gives an εLB of 0.46, while MI gives εLB of 0.04, an improvement of 12.1x. We also find
ClipBKD always improves over standard backdoors: on FMNIST by an average factor of 3.84x, and
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(a) FMNIST, LR (b) CIFAR10, LR (c) P100, LR

(d) FMNIST, FNN (e) CIFAR10, FNN (f) P100, FNN

Figure 2: Performance of privacy attacks MI, Backdoor, and ClipBKD on our datasets. LR =
logistic regression, FNN = two-layer neural network. Backdoor attacks have not been developed
for Purchase-100, so only MI and Clip-BKD were run. Backdoors do not provide positive εLB on
CIFAR10 due to difficulty with the pretrained model.

standard backdoors never reach positive εLB on CIFAR, due to the large number of points required
to poison the pretrained model. We also find that ClipBKD returns εLB that are close to εth ; for
finite εth , the majority of gaps are a factor of < 12.3x, reaching as low as 6.6x. For example, on
Purchase-100, when εth = 4, we find that ClipBKD returns an εLB of 0.46, a gap of 8.7x.

Sensitivity to Hyperparameters. We also give a more thorough evaluation of ClipBKD’s
performance as a function of DP-SGD’s hyperparameters. We vary clipping norm between 0.5, 1,
and 2 and vary the noise to ensure εth between 1, 2, 4, 8, 16, and ∞. We also vary the initialization
randomness between random normal initializations with variance 0 (fixed initialization), 0.5σ, σ, and
2σ, where σ is the variance of Glorot normal initialization. Table 2 reports the best εLB produced
by the attack over k = 1, 2, 4, 8. Our best measured values of εLB occur when initialization is fixed,
and are within a 4.2-7.7x factor of εth , speaking to the effectiveness of ClipBKD. When εth =∞ and
the initialization is fixed, we achieve perfect inference accuracy, matching εOPT (500, 0.01) = 4.54.

These experiments reveal three intuitive trends. First, as εth increases (equivalently, the noise
level decreases), εLB also increases. Second, as the initialization randomness decreases, εLB increases.
All existing analyses of DP-SGD give privacy upper bounds for any fixed initialization, and our
results suggest that initial randomization might play a significant role. Finally, as clipping norm
decreases, εLB decreases, except when the initialization is fixed. In fact, our results show that εLB
is more sensitive to the clipping norm than the amount of noise. All existing analyses of DP-SGD
consider only the noise multiplier σGD but not the clipping norm, but the role of the clipping norm
itself seems highly significant.

We emphasize that for every choice of hyperparameters, the training accuracy is 96–98%, so the
algorithm has comparable utility, but potentially very different privacy and robustness to poisoning,
as we vary these parameters. We believe these phenomena deserve further study.
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Params Fixed Init Init Rand = 0.5σ Init Rand = σ Init Rand = 2σ
εth = 1, σGD = 5.02 0.13 / 0.15 / 0.13 0.13 / 0.17 / 0.13 0.06 / 0.12 / 0.09 0.01 / 0.06 / 0.08
εth = 2, σGD = 2.68 0.33 / 0.37 / 0.28 0.27 / 0.33 / 0.39 0.10 / 0.17 / 0.27 0.01 / 0.06 / 0.17
εth = 4, σGD = 1.55 0.89 / 0.75 / 0.71 0.28 / 0.52 / 0.78 0.08 / 0.20 / 0.54 0.02 / 0.10 / 0.18
εth = 8, σGD = 1.01 1.61 / 1.85 / 1.90 0.33 / 0.55 / 1.27 0.07 / 0.25 / 0.53 0.01 / 0.05 / 0.20
εth = 16, σGD = 0.73 2.15 / 2.16 / 2.43 0.36 / 0.80 / 1.39 0.13 / 0.27 / 0.72 0.02 / 0.08 / 0.16
εth =∞, σGD = 0 4.54 / 4.54 / 4.54 0.29 / 0.95 / 2.36 0.10 / 0.42 / 0.79 0.03 / 0.09 / 0.27

Table 2: Lower bound εLB measured with ClipBKD for clipping norms of (0.5 / 1 / 2) for two-layer
neural networks trained on FMNIST. Training accuracy for all models is 96%-98%. Results are
the maximum over k = 1, 2, 4, 8. σGD refers to the DP-SGD noise multiplier, while σ is Glorot
initialization randomness [GB10]. All reported values of εLB are valid with 99% confidence over the
randomness of our experiments.

Params Init Rand = 0.5σ Init Rand = σ Init Rand = 2σ
εth = 1, σGD = 7.78 0.09 / 0.01 / 0.00 0.05 / 0.00 / 0.00 0.07 / 0.05 / 0.00
εth = 2, σGD = 4.04 0.16 / 0.27 / 0.11 0.21 / 0.17 / 0.03 0.20 / 0.10 / 0.02
εth = 4, σGD = 2.20 0.38 / 0.33 / 0.30 0.29 / 0.35 / 0.30 0.34 / 0.33 / 0.13
εth = 8, σGD = 1.31 0.52 / 0.53 / 0.42 0.54 / 0.53 / 0.52 0.56 / 0.46 / 0.50
εth = 16, σGD = 0.89 0.80 / 0.77 / 0.71 0.63 / 0.77 / 0.76 0.74 / 0.70 / 0.72
εth =∞, σGD = 0 2.73 / 4.53 / 4.54 1.52 / 3.08 / 4.52 0.90 / 1.91 / 2.79

Table 3: Lower bound εLB measured with ClipBKD for clipping norms of (0.5 / 1 / 2) for two-layer
neural networks trained on P100. Results are the maximum over k = 1, 2, 4, 8. σGD refers to
the DP-SGD noise multiplier, while σ is Glorot initialization randomness [GB10]. We do not run
experiments with fixed initialization as we already achieve εOPT (500, 0.01) with initialization of 0.5σ.
All reported values of εLB are valid with 99% confidence over the randomness of our experiments.

We present the same experiment in Table 3, run on the P100 dataset. In P100, we use `2
regularization, a higher learning rate, and more epochs, making the contribution of the initialization
smaller. As such, we find the role of both clipping norm and random initialization to be diminished.
As a result, we manage to achieve εOPT (500, 0.01) without a fixed initialization.

5 Conclusion and Future Directions

We use novel poisoning attacks to establish strong limits on the privacy of specific differentially
private algorithms, namely DP-SGD. We establish that the worst-case privacy bounds for this
algorithm are approaching their limits. Our findings highlight several questions for future exploration:

• How much can our attacks be pushed quantitatively? Can the gap between our lower bounds
and the worst-case upper bounds be closed?

• Can we incorporate additional features into the privacy analysis of DP-SGD, such as the
specific gradient-clipping norm, and the amount of initial randomness?

• How realistic are the instances produced by our attacks, and can we extend the attacks to
give easily interpretable examples of privacy risks for non-experts?

Although there is no hope of determining the precise privacy level of a given algorithm in a fully
empirical way, we believe our work demonstrates how a quantitative, empirical approach to privacy
attacks can effectively complement analytical work on privacy in machine learning.
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A Extending Algorithm 2.

Measuring ε when δ > 0. Notice that Algorithm 2 holds for (ε, 0)-differential privacy. However,
this is only for simplicity—the group privacy guarantee of (ε, δ)-differential privacy can be converted
to a similar procedure. Write x = exp(ε) in the group privacy guarantee for Equation 2, and
rearrange to provide p1x

k+1 − (p1 − δ)xk − p0x + (p0 − δ) ≥ 0. We can solve for x here using a
root-finding algorithm to find x, and computing εLB = ln(x). Theorem 2 can be easily extended to
this case.

Measuring εLB with both O and OC . Notice that differential privacy makes a guarantee for
all output sets, including the complement OC ; if Pr[A(D) ∈ O] = p, then Pr[A(D) ∈ OC ] = 1− p.
If, upon computing p0, p1, we can compute a larger εLB by using OC , this requires no extra trials.

For example, suppose δ = 0, k = 1, p1 = 0.8, and p0 = 0.4. Here, εLB = ln(p1/p0)/1 = ln(2). If,
instead, we replace O by OC , εLB = ln((1 − p0)/(1 − p1))/1 = ln(0.6/0.2) = ln(3). In Lemma 3,
we show when this technique improves εLB: when p1 > p0 + kδ and p0 + p1 > 1. We use this
modification in all of our experiments.

Figure 3: f0(x) and f1(x), as defined in Lemma 3 with δ = 10−5, k = 4, p0 = 0.6, p1 = 0.8.

Lemma 3. If p1 > p0+kδ and p0+p1 > 1, then the largest root of f0(x) = p1x
k+1−(p1−δ)xk−p0x+

(p0−δ) is smaller than the largest root of f1(x) = (1−p0)xk+1−(1−p0−δ)xk−(1−p1)x+(1−p1−δ).

Proof. Write x0 the largest root of f0(x), and x1 the largest root of f1(x). We show this in two
parts: first, we show that, for all p0, p1, f0(x) has a root x > 1 when p1 > p0 + kδ, after which it is
monotonically increasing. This shape is evident in Figure 3. This provides a nonzero εLB. Then we
show that this εLB must be smaller for f1(x) when p0 + p1 > 1, because f0(x)− f1(x) > 0 when
x > 1. This ensures that f1(x0) < 0, and so the root x1 > x0.

We begin by showing that f0(x) has a single root x > 1. First, notice that f0(1) = 0. We then
analyze the derivative, showing that it starts negative, has a root, and then is always positive. This
indicates that there can only be one root.

f ′0(x) = (k + 1)xkp0 + kxk−1(δ − p0)− p1 = kp0x
k−1(x− 1) + xkp0 + kδxk−1 − p1

This has a root x > 1 if xkp0 + kδxk−1 − p1 < 0, so we require p0 + kδ − p1 < 0. Notice too that
f ′0(x) is monotonically increasing at x > 1. This ensures that it has only one root x > 1. This
argument holds, too, for f1(x), as if p0 + kδ − p1 < 0, then (1− p1) + kδ − (1− p0) < 0.
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Algorithm 5: Clipping-Aware Poisoning Attack Generation

Data: Dataset X ∈ Rn×d, Y ∈ [−.5, .5]
Result: Dc = (Xp, Yp), Dp = (Xp, Y

′
p)

U,D, V = SVD(X) . Singular value decomposition
xp = Vd
yp = .5
Return (X || xp, Y || yp), (X || xp, Y || −yp)

Now that we know both f0 and f1 only have a single root, and they are both increasing at that
root, we just need to show that f1(x0) < 0, as this will ensure x1 > x0. We do this by showing that
∀x > 1, f0(x)− f1(x) > 0. First, write

f0(x)− f1(x) = xk+1(p0 + p1 − 1) + xk(1− p0 − p1) + x(1− p0 − p1) + p0 + p1 − 1.

The δ terms cancel, and we can factor the above into

f0(x)− f1(x) = (p0 + p1 − 1)(x− 1)(xk − 1).

This is always positive when x > 1 and p0 + p1 > 1.

B Analysis of Backdoor Poisoning-based Auditing

We now provide formal evidence for the effectiveness of backdoor poisoning attacks in auditing
differentially private algorithms with a case study on linear regression. To the best of our knowledge,
this is also the first formal analysis of backdoor poisoning attacks for a concrete learning algorithm.

Theorem 4. Given a dataset X ∈ Rn×d, Y ∈ [−.5, .5]n, where each xi ∈ X satisfies |xi|2 ≤ 1,
consider output perturbation to compute ridge regression with regularization λ, satisfying ε, δ
differential privacy. Then Algorithm 5 produces a backdoor attack that produces a lower bound

εLB =
λε

(1 + λ+ σd)
√
π ln(1.25/δ)

− 4δ

where σd is the smallest singular value of X.

Proof. We begin by computing the difference between the optimal linear regression parameters
w0, w1 for the two datasets D0 = (X || xp, Y || yp), D1 = (X || xp, Y || −yp), respectively. We refer
to Xp = (X || xp), Y0 = (Y || yp), Y1 = (Y || −yp). We continue to refer to the eigendecomposition
of XTX = V DV T . Recall that the optimal parameters for an arbitrary dataset X,Y with `2
regularization λ is (λI +XTX)−1XTY .

w0 − w1 = (λI +XT
p Xp)

−1XT
p (Y0 − Y1)

= (λI +XT
p Xp)

−1xp

= (λI + V DV T + vdv
T
d )−1vd

= (λV IV T + V DV T + V diag(ed)V
T )−1vd

= V (λI +D + diag(ed))
−1V T vd

=
vd

λ+ σd + 1
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The output perturbation algorithm for Ridge regression, with (ε, δ)-DP, adds Gaussian noise
with variance σ2 = 2 ln(1.25/δ)(2/λ)2/ε2 to the optimal parameters w.

The optimal distinguisher for w0 +N (0, σ2I) and w1 +N (0, σ2I) is

f(w) = 1[w · vd − 0.5(w0 + w1) · vd < 0].

Letting c = 0.5
λ+σd+1 , the probability of success for this distinguisher is Pr[N (0, σ2) < c], which gives

an ε lower bound of

ln

(
Pr[N (0, σ2) < c]− δ
Pr[N (0, σ2) < −c]

)
.

We can lower bound Pr[0 < N (0, σ2) < c] using the following integral approximation:

Pr[0 < N (0, σ2) < c] ≥ c

σ
√

2π
exp(−c2/2σ2),

so our ε lower bound is

ln

(
0.5− δ + c/(σ exp(c2/2σ2)

√
2π)

0.5− c/(σ exp(c2/2σ2)
√

2π)

)
≥ ln

(
0.5− δ + c/(σ exp(c2/2σ2)

√
2π)

0.5 + δ − c/(σ exp(c2/2σ2)
√

2π)

)
.

By its Maclaurin series, ln
(
0.5+x
0.5−x

)
≥ 4x. Then we can compute our lower bound on ε to be

εLB ≥ 4

(
c

σ exp(c2/2σ2)
√

2π
− δ
)

= O

(
λε

(1 + λ+ σd)
√

ln(1/δ)

)
so the attack differs by a constant factor from the provable ε.

C ClipBKD with Pretrained Models

State-of-the-art differentially private CIFAR10 models use transfer learning from a fixed pretrained
CIFAR100 convolutional neural network. We call the pretrained model function f0, which is
never updated during training. Training produces a f1, such that the entire prediction model is
f(x) = f1(f0(x)).

This makes ClipBKD not directly applicable, as ClipBKD requires access to the input of the
trained model f1. Then we must try to produce some x such that f0(x) = hp, where hp is produced
by SVD in Algorithm 3. This is not in general possible, so we instead use gradient descent to
optimize the combination of two loss functions on x.

Our first loss function incentivizes decreasing hp · v for high-variance directions v ∈ Vhigh from
SVD. This ensures the gradient will not move in SGD’s noisy directions. Our second loss function
incentivizes increasing hp · v for low-variance directions v ∈ Vlow from SVD, ensuring the gradient is
distinguishable in low variance directions. Putting these together, we produce xp by optimizing the
following loss function:

xp = arg max
x

∑
v∈Vlow

(f0(x) · v)2 −
∑

v∈Vhigh

(f0(x) · v)2

s.t. x ∈ [0, 1]d
(3)

We perform this optimization by projected gradient descent, running 10000 iterations with a
learning rate of 1.
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Algorithm 6: Membership Inference [YGFJ18]

Data: Training dataset Dtr of size n, Test dataset Dt of size n, Dataset, learning algorithm A

f, c = A(Dtr) . A returns model and training loss
correct ct = 0
For (x, y) ∈ Dtr

If `(f ;x, y) < c correct ct = correct ct + 1 . training set should have small loss;
For (x, y) ∈ Dt

If `(f ;x, y) > c correct ct = correct ct + 1 . test set should have higher loss;
Adv = correct ct/2n
εLB = ln(Adv/(1−Adv))

D Membership Inference

In membership inference [YGFJ18], an adversary is given a model f and its training loss c and seeks
to understand whether a given data point (x, y) was used to train the model. Although alternative
formulations have been proposed [SSSS17], we focus on the one proposed by [YGFJ18]. Intuitively,
the attack relies on a generalization gap: the loss on training data should be smaller than the loss
on test data. The algorithm is provided a set of 2n elements, n of which were used for training, and
n not used for training, and predicts that any sample with loss lower than the training loss. The
accuracy of these predictions is bounded by exp(ε)

1+exp(ε) for any ε-differentially private algorithm, so we
can produce a lower bound εLB from it. The algorithm is provided in Algorithm 6.
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