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Abstract—In a Cross-Origin State Inference (COSI) attack, an
attacker convinces a victim into visiting an attack web page, which
leverages the cross-origin interaction features of the victim’s web
browser to infer the victim’s state at a target web site. Multiple
instances of COSI attacks have been found in the past under
different names such as login detection or access detection attacks.
But, those attacks only consider two states (e.g., logged in or not)
and focus on a specific browser leak method (or XS-Leak).

This work shows that mounting more complex COSI attacks
such as deanonymizing the owner of an account, determining if
the victim owns sensitive content, and determining the victim’s
account type often requires considering more than two states. Fur-
thermore, robust attacks require supporting a variety of browsers
since the victim’s browser cannot be predicted apriori. To address
these issues, we present a novel approach to identify and build
complex COSI attacks that differentiate more than two states and
support multiple browsers by combining multiple attack vectors,
possibly using different XS-Leaks. To enable our approach, we
introduce the concept of a COSI attack class. We propose two
novel techniques to generalize existing COSI attack instances into
COSI attack classes and to discover new COSI attack classes. We
systematically apply our techniques to existing attacks, identifying
40 COSI attack classes. As part of this process, we discover
a novel XS-Leak based on window.postMessage. We implement
our approach into Basta-COSI, a tool to find COSI attacks in
a target web site. We apply Basta-COSI to test four stand-alone
web applications and 58 popular web sites, finding COSI attacks
against each of them.

I. INTRODUCTION

In a Cross-Origin State Inference (COSI) attack, the at-
tacker’s goal is to determine the state of a victim visiting an
attack page (e.g., attack.com/index.html), in a target web site
not controlled by the attacker (e.g., linkedin.com). The state
of the victim in a target web site is defined, among others,
by login status, account, and content properties. Determining
the victim’s state can have important security implications.
For example, determining that a victim is logged into a
target web site implies that the victim owns an account in
that site. This is problematic for privacy-sensitive web sites
such as those related to post-marital affairs and pornography.
Determining content ownership can be used to establish if
a program committee member is reviewing a specific paper
in a conference management system, or if the victim has
uploaded some copyrighted content to an anonymous file
sharing site. Determining if the victim owns a specific account,
i.e., deanonymizing the account owner, enables identifying
which company employee runs an anonymous blog criticizing
the company’s management. Such state inferences are even
more critical when the attacker is a nation state that performs

censorship and can determine if the victim has an account in, or
is the administrator of, some prohibited web site. The problem
is aggravated by COSI attacks being web attacks, which can
be performed even when the victim employs anonymization
tools such as a virtual private network.

In a COSI attack, the attacker convinces the victim to visit
an attack page. The attack page includes at least one state-
dependent URL (SD-URL) from the target web site, whose
response depends on the state of the visitor. For example, a
SD-URL may point to some content in the target web site
only accessible when the victim has a specific state such as
being authenticated. The inclusion forces the victim’s browser
to send a cross-origin request to the target web site. Since the
request is cross-origin, the same-origin policy (SOP) prevents
the attack page from directly reading the response. However,
the attacker can leverage a browser leak method (also known as
XS-Leak) to infer, from the cross-origin response, the victim’s
state at the target web site.

Multiple instances of COSI attacks have been found in the
last 13 years by both security analysts (e.g., [26], [27], [33],
[36], [40], [51]) and academics (e.g., [21], [31], [38], [56],
[64]), with roughly half of them being presented in the last
four years, and several in 2019 (e.g., [55], [56], [61]). However,
they have previously been considered as sparse attacks under
different names such as login detection attacks [34], [35],
[51], [56], login oracle attacks [50], [57], cross-site search
attacks [31], URL status identification attacks [47], and cross-
site frame leakage attacks [55]. As far as we know, we are
the first to systematically study these attacks and group them
under the same COSI attack denomination.

Previous works have several limitations. First, they con-
sider two states. For example, login detection attacks differenti-
ate if the victim is logged in or not, and access detection attacks
if the victim has previously accessed a site or not. However,
sites typically have more than two states. Considering only
two states limits the type of attacks that can be launched, and
can introduce false positives, e.g., determining that a victim
is logged in when he is not. A second limitation is that they
often test attacks only on one browser, thus the attack may not
work on other browsers. To address both issues, we present a
novel approach to identify and build complex COSI attacks by
combining multiple attack vectors in order to handle more than
two states and multiple browsers. For example, our approach
identifies a COSI attack against HotCRP that determines if
the victim, i.e., a program committee member using Chrome,
Firefox, or Edge is the reviewer of a submitted paper. This
attack involves multiple states (e.g., author, reviewer, logged
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out) and requires two COSI attack vectors: one to determine
if the victim is logged in and another to determine if a logged
victim is reviewing the paper.

A third limitation is that they focus on a specific XS-Leak.
Instead, our approach is generic; it supports all known XS-
Leaks and can easily accommodate new ones. For example,
it incorporates a novel XS-Leak we have discovered based
on window.postMessage, which affects popular sites such as
blogger.com, ebay.com, reddit.com, and youtube.com. At
the core of our generic approach is the concept of a COSI
attack class, which defines the SD-URLs that can be attacked
using a specific XS-Leak, the affected browsers, and the set
of inclusion methods (i.e., HTML tags and DOM methods)
that can be used to include the SD-URL in the attack page.
To identify attack classes we propose a novel generalization
technique that given a previously known COSI attack, gen-
eralizes it into an attack class that covers many other attack
variants. We also propose an amplification technique that iden-
tifies previously unknown variations, e.g., attack classes using
different inclusion methods. We systematically explore the
literature to identify previously known COSI attack instances
and apply our generalization and amplification techniques on
them. This process identifies 40 COSI attack classes, of which
19 generalize prior attacks and 21 are new variations.

We implement our approach into a tool called Basta-
COSI, publicly available as part of the open-source ElasTest
platform [4]. Given as input a target web site and state scripts
defining the user states at the target web site, Basta-COSI
identifies SD-URLs in the target web site, tests if those SD-
URLs can be attacked using any of the 40 attack classes, and
produces attack pages that combine multiple attack vectors to
uniquely identify a state. We have applied Basta-COSI to 62
targets: four stand-alone web applications (HotCRP, GitLab,
GitHub, and OpenCart) and 58 popular web sites. Basta-COSI
discovers at least one COSI attack against all of them; it
finds login detection attacks against all 62 targets, account
deanonymization attacks in 36, account type detection attacks
in 5, SSO status attacks in 12, and access detection attacks
in 5. The attacks include, among others, deanonymization
attacks for determining if the victim is the reviewer of a
paper in HotCRP, owns a blog in blogger.com, an account
in pornhub.com, or a GitLab/GitHub repository.

The following are the main contributions of this paper:

• We present a novel approach to identify and build
complex COSI attacks that differentiate more than
two states and support multiple browsers. To enable
our approach we propose COSI attack classes, which
define the SD-URLs and browsers that can be attacked
using an XS-Leak and a set of inclusion methods.

• We discover a novel XS-Leak based on win-
dow.postMessage that affects the three major browsers
and can be leveraged to attack popular web sites.

• We propose two techniques to generalize known COSI
attack instances into COSI attack classes and to dis-
cover new variations. We perform the first systematic
study of COSI attacks and apply our techniques to
them, identifying 40 attack classes, of which 19 gen-
eralize prior attacks and 21 are new variations.

State Attribute Possible Values
Login Status (a) Logged in

(b) Not logged in
Single Sign-On Status (a) Logs in via a specific SSO service

(b) Logs in via another SSO service
Access Status (a) Has previously accessed

(b) Has not previously accessed
Account Type (a) Has a premium account

(b) Has a regular account
Account Age Category (a) Age above a certain threshold

(b) Age below a certain threshold
Account Ownership (a) Owner of a specific account

(b) Not the owner of an account
Content Ownership (a) Owner of a specific content

(b) Not the owner of a content

TABLE I: Examples of user states in a target web site.

• We implement our approach into Basta-COSI, a tool
to find COSI attacks in a target web site. We ap-
ply Basta-COSI to 62 targets including stand-alone
web applications and popular live sites. We find
COSI attacks against all of them, enabling account
deanonymization, account type inference, SSO status,
login detection, and access detection.

• We have released Basta-COSI as part of the security
service of the ElasTest open-source platform for test-
ing cloud applications [4].

II. OVERVIEW

This Section provides an overview of COSI attacks. Sec-
tion II-A details the user state at a target web site. Section II-B
describes the two phases of a COSI attack. Section II-C
discusses handling more than two states. Finally, Section II-D
presents the COSI attack threat model.

A. User State

Most web sites have accounts owned by a user and identi-
fied by a username. In this paper a user is a person who visits
a target web site and may or may not own an account in that
site; it should not be confused with a username that identifies
an account. Accounts are often anonymous, i.e., the person
that owns the account is unknown. Deanonymizing an account
means linking its username to the person owning the account.
Web sites that do not have accounts often define sessions to
identify users that visit them repeatedly. In those sites a session
acts as an account for our purposes.

In a COSI attack, the attacker’s goal is to infer the state of a
victim user with respect to a target web site, not controlled by
the attacker. The state of a user at a target web site is defined
by the values of status, account, and ownership state attributes.
Example state attributes are provided in Table I. The values
of those state attributes define, at a given time, what content
the user can access (or receives) from the target site. Status
attributes include whether the user is logged in, logged out,
logged in using a specific single sign-on (SSO) service, or
has an ongoing session (i.e., in sites without user accounts).
Account attributes include the account type (e.g., regular,
premium, administrator), the account age category (e.g., under-
age user with restricted access). Ownership attributes include
whether the user is the owner of some specific account and
whether he owns some content stored in the site (e.g., a PDF
paper in a conference management system).
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The attributes that define the user’s state are specific to
each target site. Any of those attributes may be targeted by
an attacker with different, often critical, security implications.
For example, COSI attacks targeting the login status can be
used by an oppressive regime to determine if the victim is
logged in (and thus owns an account) in a censored site [22],
despite the victim using a VPN. They can also be used to
blackmail users owning accounts in privacy-sensitive sites
such as those related to pornography [24] and post-marital
affairs [39]. Furthermore, they may be used as an initial step
for Cross-Site Request Forgery (CSRF) [20] or Cross-Site
Scripting (XSS) [49] attacks. Attacks on access status have
similar implications than those on login status for sites without
user accounts. For example, they could be used to determine
if a user previously visited a forbidden site [56].

COSI attacks targeting ownership are highly impactful.
Content ownership can be used to determine if a program
committee member is reviewing a specific paper, or if a user
has uploaded some copyrighted content to an anonymous file
sharing site. Account ownership can be used for deanonymiz-
ing the account in a closed-world setting, i.e., determining
which of n known persons owns a specific account. Such
closed-world deanonymization can be used to determine which
company employee is the owner of an anonymous blog highly
critical with the company’s management.

Attacks that target account type, account age category, and
login status can be used to fingerprint the victim [41], [71],
and applied for targeted advertising by a malicious publisher
in an open-world setting (where the set of users is unknown).
Finally, knowledge of the SSO service used by the victim can
be used to exploit a vulnerability in that SSO [16], [17], [66].

State scripts. In this work, we capture states at a target
site using state scripts that can be executed to automatically
log into the target site using a configurable browser and the
credentials of an account with a specific configuration. For
example, we may create multiple user accounts with different
configurations, e.g., premium and free accounts, two users that
own different blogs, or authors that have submitted different
papers to a conference management system. We also create a
state script for the logged out state.

B. COSI Attack Overview

In a COSI attack, the attacker convinces a victim to visit
an attack page. The attack page leverages the cross-origin
functionalities of the victim’s web browser to infer the victim’s
state at a target web site. A COSI attack comprises of two
phases: preparation and attack.

Preparation. The goal of the preparation phase is to create
an attack page that when visited by a victim will leak the
victim’s state at the target web site. An attack page implements
at least one, possibly more, attack vectors. Each attack vector
is a triplet of a state-dependent URL from the target web
site, an inclusion method to embed the SD-URL in the attack
page, and an attack class that defines, among others, a leak
method (or XS-Leak) that interacts with the victim’s browser
to disclose a victim’s state at the target site. An attack page
may contain multiple attack vectors. For example, it may need
to chain attack vectors to uniquely distinguish a state, e.g., one

to identify if the victim is logged in, and another to identify
if a logged victim has a premium account.

We say that a URL is state-dependent if, when requested
through HTTP(S), it returns different responses depending on
the state it is visited from. Note that it is not needed that
each state returns a different response. For example, if there
are 6 states and two different responses, each for three states,
the URL is still state-dependent. The SD-URL is included
by the attack page using an inclusion method such as an
HTML tag (e.g., img, script) or a browser DOM method
(e.g., window.open). When the attack page is visited by the
victim, the inclusion method forces the victim’s browser to
automatically request the SD-URL from the target site. The
specific response received depends on the victim’s current
state. SD-URLs are very common in web applications. For
example, in many web applications, sending a request for a
profile’s picture will return an image if the user is logged in,
and an error page, or a redirection to the login page, otherwise.
Similarly, in a blog application, a new post can only be added
if the user is both logged in and the owner of the blog.

The request induced by the attack page for a SD-URL
at the target site is cross-origin, and thus controlled by
the Same-Origin Policy (SOP) [72]. The SOP prevents the
attack page from directly reading the contents of a cross-
origin response [18]. However, there exist XS-Leaks that allow
bypassing a browser’s SOP to disclose information about
cross-origin responses. For example, the EventsFired XS-Leak
distinguishes responses to SD-URLs that trigger a callback in
one state (e.g., onload) and another callback (e.g., onerror), or
no callback, in another state [36].

While a target site may contain many SD-URLs, only
a subset of those may be useful to mount a COSI attack.
One main challenge with XS-Leaks is that their behavior may
depend on the target browser and the inclusion method used.
Unfortunately, this key concept is missing from prior works
presenting COSI attack instances. In this work, we introduce
the concept of a COSI attack class, which defines the two
different responses to a SD-URL that can be distinguished
using a XS-Leak, the possible inclusion methods that can
be used in conjunction with the XS-Leak, and the browsers
affected. Attacks classes are independent of the target site
states and thus can be used to mount attacks against different
targets. Section III describes our approach to identify attack
classes and the 40 COSI attack classes we identified.

Based on the attack classes, we propose a novel approach to
detect COSI attacks. Our approach first collects the responses
to the same URL from different states. SD-URLs will be the
ones that produce different responses in some states. Each pair
of different responses coming from distinct states is matched
with the list of known attack classes. If a matching attack
class is found, then an attack vector can be built to distinguish
the responses (and thus the states that produce them) that
uses that SD-URL, the XS-Leak in the attack class, and one
of the inclusion methods defined by the attack class. Since
there may be n > 2 states that need to be distinguished, the
process repeats until sufficient attack vectors are identified to
uniquely distinguish the target state to be attacked. We have
implemented this approach into Basta-COSI, a tool to detect
COSI attacks, detailed in Section IV.
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Attack. In the attack phase, the attacker convinces the victim
into visiting the attack page. This can be achieved in multiple
ways. One possibility is sending an email with the attack
page URL and text to convince the victim to click on it.
Such targeted attack requires the victim’s email, but allows
identifying the state of a specific person, e.g., deanonymizing
the owner of an account. Another possibility is a watering-hole
approach where the attacker injects the attack page URL into
a vulnerable page that victims are likely to visit. Such attack
allows identifying the state of a visitor, but does not identify
who the visitor is. The method used to convince the victim to
visit the attack page is outside the scope of this paper. When
the attack page is loaded at the victim’s browser, it checks the
browser used by the victim, delivers suitable attack vectors,
and reports back the leaked victim’s state.

C. Beyond Two States

Current COSI attacks targeting login or access detection
consider only two states. However, most web sites have more
than two states, e.g., logged in users with different permissions.
Considering only two states introduces some issues. First, it
limits the type of attacks, preventing attacks that target finer-
grained states such as account type or content ownership.
Furthermore, it can introduce false positives, which is best
illustrated with an example.

In 2015, Lee et al. [47] presented a novel AppCache XS-
Leak (described in Section III) that enabled login detection.
One of their login detection attacks targeted the NDSS 2015
HotCRP installation. The SD-URL https://ndss2015.ccs.n
eu.edu/paper/〈paper-no〉 returned a success HTTP status
code when the victim was logged into HotCRP and an error
status code otherwise. That difference could be identified
using the AppCache XS-Leak. In reality, the HotCRP access
control is more fine-grained and the information of a paper
can only be accessed by its authors or by reviewers, but
not by other authors who would also receive an error. Thus,
their attack could incorrectly identify an authenticated victim,
who happened to be an author of another paper, as not being
authenticated. Such false positives could be avoided if they
could guarantee that victims would not be authors (e.g., not
sending authors an email with the attack page URL), but
authors are only known to the conference administrators.

Running example. As running example we use a reviewer
deanonymization attack Basta-COSI found on HotCRP, which
was acknowledged and fixed. Listing 1 shows a simplified
version of the attack page produced by Basta-COSI that we
sent to HotCRP developers to report the attack. It identifies
if the visiting victim is the reviewer of paper #123 submitted
to https://conf.hotcrp.com. Since HotCRP has multiple states
(e.g., logged in, author, reviewer, reviewer of a specific paper)
and we want to support the major browsers (Chrome, Firefox,
Edge), the attack page requires three attack vectors executed
when the attack page is loaded (Line 3). It first runs an
attack vector for determining the victim’s login status, which
works regardless if the victim’s browser is Chrome, Firefox, or
Edge (Lines 12, 20-28). This attack vector includes SD-URL
https://conf.hotcrp.com/offline.php?downloadForm=123 with
the object HTML tag and uses the EventsFired XS-Leak:
if the victim is logged into the site, no events are triggered,
otherwise the onload event is triggered. Then, it executes

Listing 1: Running example attack page for deanonymizing the
reviewer of a paper in HotCRP.

1 <!DOCTYPE html><html>
2 //Launch attack when page loads
3 <body onload="attack()"><script>
4 //SD-URLs used in the attack vectors
5 site = "https://conf.hotcrp.com"
6 loginURL = site+"/offline.php?downloadForm=123";
7 reviewURL = site+"/api.php/review?p=123";
8 //Object for storing fired events
9 evnts = {"obj": [], "lnk" : [], "embd" : []}

10 function attack() {
11 // Login detection on all browsers
12 EF_XctoObject();
13 // Reviewer deanonymization
14 if (detectBrowser() == "Chrome") {
15 EF_StatusErrorLink();
16 }
17 else { EF_StatusErrorObject(); }
18 sendToAttkr(evnts); //send events to attacker
19 }
20 function EF_XctoObject() {
21 tag = document.createElement("object");
22 tag.setAttribute("data", loginURL);
23 tag.setAttribute("rel", "stylesheet");
24 tag.onload = function(){
25 evnts["obj"].push("onload");
26 }
27 document.body.appendChild(tag);
28 }
29 function EF_StatusErrorLink(){...}
30 function EF_StatusErrorObject(){...}
31 </script></body></html>

the attack vectors for reviewer deanonymination, which differ
for Chrome (Line 15) and Firefox/Edge (Line 17). These
attack vectors are not detailed for brevity, but both use the
EventsFired XS-Leak with different inclusion methods for the
same SD-URL https://conf.hotcrp.com/api.php/review?p=123,
which returns a success HTTP status code if the victim has
submitted a review for paper #123, and an error HTTP status
code otherwise.

D. Threat Model

This section describes the COSI attack threat model, de-
tailing the assumptions we make about each actor.

Attacker. We assume that the attacker can trick victims into
loading the attack page on their web browsers. During prepara-
tion, the attacker has the ability to create and manage different
accounts at the target web site, or in a local installation of the
target’s web application. The attacker controls an attack web
site where he can add arbitrary pages. Finally, we assume the
attacker can identify the victim’s browser version (e.g., from
the User-Agent header) to select the right attack vector.

Victim. The victim uses a fully up-to-date web browser and
can be lured by the attacker into visiting the attack webpage.
We assume that the victim logs into the target web site with
the same web browser used to visit the attack page.

Target site. The target site contains at least one SD-URL
for which the attacker knows an attack class. The target site
does not suffer from any known vulnerabilities. In particular,
resources containing sensitive information are protected from
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direct cross-origin reads, i.e., the target site does not contain
CORS misconfigurations [48], cross-site scripting [49], or
cross-site script inclusion vulnerabilities [50].

III. COSI ATTACK CLASSES

A key concept in our approach are COSI attack classes.
A COSI attack class is a 6-tuple that comprises of a class
name, signatures for two groups of responses that can be
distinguished using the attack class, an XS-Leak, a list of
inclusion methods that can be used to embed the SD-URL
in an attack page, and the list of affected browsers. It captures
which SD-URLs can be used for building an attack vector
against the affected browsers using the XS-Leak and one
of the inclusion methods defined. A reader could think that
an attack class should simply correspond to an XS-Leak.
However, the behavior of some XS-Leaks depends on the
target browser and the inclusion method used. Depending on
those two parameters, the set of affected SD-URLs differs.
Thus, identifying attack classes is fundamental for determining
whether and how a given SD-URL can be attacked. This
section first presents our approach to discover COSI attack
classes in Section III-A and then details the 40 attack classes
identified in Section III-B.

A. Discovering Attack Classes

Our process to discover COSI attack classes comprises of
three main steps: (1) identify and validate previously proposed
COSI attack instances; (2) generalize known COSI attack
instances into COSI attack classes; and (3) discover previously
unknown attack classes.

Identifying attack instances. We have performed a systematic
survey of COSI attack instances presented in prior work under
different names. This process identified 23 prior works, listed
in Table VIII and described in Section IX. Out of those, 11
are blog posts, 10 are academic papers, one is a bug report,
and the last one is a project simultaneous to our work that
tries to enumerate all known XS-Leaks [65]. Those 23 prior
works presented 31 attack instances. All attack instances could
be validated in at least one recent browser version. To validate
an attack instance we manually create a test attack page based
on the available information. The test attack page includes
a URL from a test application we have designed to return
custom responses to an incoming request. Requests to the test
application define how the response should look (i.e., which
headers and body to return). In this step, we configured our
test application to return the responses described in the work
presenting the attack. This enables validating attack instances
even when the SD-URL used in the attack was no longer active.

Generalizing instances into classes. Generalizing a COSI
attack instance into a COSI attack class comprises of two steps.
First, identifying the set of responses to the inclusion method
used in the attack instance, that still trigger the same observable
difference in the browser (e.g., onload/onerror or different
object property values). Then, checking if the observable
difference still manifests with other inclusion methods and
browsers. The generalization uses the test application to control
the response received from a potential target site. We illustrate
it using an attack instance of the EF-StatusErrorObject attack
class. The generalization starts with the response that triggers

Tag Attribute Included Resource’s Type

applet code Applet
audio src Audio
embed src Defined in type attribute
frame src Typically web pages
iframe src Typically web pages
img src Image
input src Image (when attr. type = “picture”)
link href Defined in rel and type attributes
object data Defined in type attribute
script src JS
source src Audio/Video
track src WebVTT [8]
video poster Image
video src Video

TABLE II: HTML tags supporting resource inclusion.

the onload callback and tries to modify each response element
(header or body) to a different value. If the modification still
triggers the onload callback, then the element can be ignored.
In our example, all fields can be ignored, except the status
code that it should be 200 and the content-type that should
not correspond to an audio or video. The generalization then
repeats for the response that triggers the onerror callback,
returning that the status code should not be success (200) or
redirection (3xx), but other values for the status code, headers,
and body do not matter. Once the responses are generalized,
it tests whether other inclusions methods still trigger the same
observable difference. For this, it tests the window.open()
method and the 13 HTML tags that enable resource inclusion
without user intervention, shown in Table II. Finally, it checks
if the leak manifests in other browsers. Table VIII shows that
the 31 attack instances examined belonged to 15 attack classes,
i.e., many were duplicates.

Discovering new attack classes. The test application allows
systematically exploring combinations of header and body
values in responses. For each response, browser events and
DOM values are logged. Pairs of responses that produce
observable differences (e.g., trigger different callbacks), and
do not match existing attack classes, correspond to new attack
instances, and are generalized as above. Overall, we discovered
21 new attack classes, of which 12 use the EventsFired (i.e.,
onload/onerror) XS-Leak, 8 use the Object Property XS-Leak,
and 1 uses a completely novel XS-Leak based on postMessage.

B. Attack Classes Description

Table III details the 40 attack classes identified by the
above process. For each attack class, the table shows the
name we assigned to the class; a description of the two
different responses by a SD-URL that can be targeted using
this attack class; the attack page logic with the methods that
can be used to include the SD-URL and the XS-Leak to
distinguish the responses; and the affected browsers. In each
response description we abbreviate HTTP fields as follows:
Status Code (sc), Content-Type (ct), X-Content-Type-Options
(xcto), Content-Disposition (cd), and response body (bdy).

EventsFired. The first 20 attack classes use the events fired in
the browser as XS-Leak and hence are denoted by the prefix
EF-. The first attack class EF-StatusErrorScript can target SD-
URLs that return in one state a success status code (sc = 200)
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Class SD-URL Responses Attack Page’s Logic Browsers

Response A Response B Inclusion Methods Leak Method Firefox Chrome Edge

EF-StatusErrorScript sc = 200, ct = text/javascript sc = (4xx OR 5xx) script src=URL [onload] / [onerror] X X X

EF-StatusErrorObject sc = 200, ct 6= (audio OR video) sc 6= (200 OR 3xx) object data=URL [onload] / [onerror] X 7 7

EF-StatusErrorEmbed sc = 401, ct = (text/html) sc 6= 401, ct = (text/html) embed src=URL [] / [onload] 7 7 X

EF-StatusErrorLink sc = (200 OR 3xx), ct 6= text/html sc 6= (200 OR 3xx) link href=URL rel=prefetch [onload] / [onerror] 7 X 7

EF-StatusErrorLinkCss sc = (200 OR 3xx), ct = text/css sc 6= (200 OR 3xx), ct 6= text/css link href=URL rel=stylesheet [onload] / [onerror] X X 7

EF-RedirStatLink sc = 3xx sc 6= 3xx, cto = nosniff, ct 6= (text/css
OR text/html)

link href=URL rel=stylesheet [onload] / [onerror] 7 X 7

EF-StatusErrorIFrame sc = (200 OR 3xx OR 4xx or 5xx), ct=
(text/javascript OR text/css)

sc = (200 OR 3xx OR 4xx or 5xx), ct 6=
(text/javascript OR text/css)

iframe src=URL [] / [onload] 7 7 X

EF-NonStdStatusErrorIFrame sc = (200 OR 3xx OR 4xx or 5xx), ct =
(text/javascript OR text/css)

sc = 999 iframe src=URL [] / [onload] 7 7 X

EF-CDispIFrame sc = 200, cd = attachment cd 6= attachment iframe src=URL [] / [onload] 7 X 7

EF-CDispStatErrIFrame sc = (4xx OR 5xx), cd = attachment sc = (4xx OR 5xx), cd 6= attachment iframe src=URL [] / [onload] X 7 7

EF-CDispAthmntIFrame sc = 200, cd = attachment ¬(sc = 200, cd = attachment) iframe src=URL [] / [onload] 7 X 7

EF-XctoScript sc = 200, xcto disabled, ct = (text/html OR
text/css OR application/pdf)

sc = 200, xcto = nosniff, ct = (text/html
OR text/css OR application/pdf)

script src=URL [onload] / [onerror] X 7 X

EF-XctoObject sc = 200, xcto disabled, ct = (text/html OR
text/css OR application/json)

sc = 200, xcto = nosniff, ct = (text/html
OR text/css OR application/json)

object data=URL [onload] / [ ] X X X

EF-CtMismatchObject sc = 200, ct = X sc = 200, ct = Y object data=URL
typesmustmatch type=X

[onload] / [onerror] X 7 7

EF-CtMismatchScript sc = 200, ct = (text/javascript) sc = 200, xcto = nosniff, ct 6= (text/-
javascript)

script src=URL [onload] / [onerror] X 7 X

EF-CtMismatchImg sc = (200 OR 3xx OR 4xx OR 5xx), ct =
image

sc = (200 OR 3xx OR 4xx OR 5xx), ct
6= image

img src=URL [onload] / [onerror] 7 X X

EF-CtMismatchAudio sc = (200 OR 3xx OR 4xx OR 5xx), ct =
audio

sc = (200 OR 3xx OR 4xx OR 5xx), ct
6= audio

audio src=URL ¬[onerror OR on-
suspend] / [onerror
OR onsuspend]

7 X 7

EF-CtMismatchVideo sc = (200 OR 3xx OR 4xx OR 5xx), ct =
video

sc = (200 OR 3xx OR 4xx OR 5xx), ct
6= video

video src=URL ¬[onerror OR on-
suspend] / [onerror
OR onsuspend]

X 7 7

EF-XfoObject sc = 200, xcto = text/*, xfo is disabled sc = 200, xfo is enabled object data=URL [] / [onload] 7 X 7

EF-CacheLoadCheck bdy = includes URL A bdy = does not include URL A Send error req to URL A,
link rel=preload href=URL,
img src=URL A, send error
req to URL A

[onload]/[onerror] X X 7

OP-LinkSheet sc = 200, ct = text/css, bdy = CSS-like sc = 200, ct 6= text/css, bdy 6= CSS-like link rel=stylesheet href=URL sheet 7 7 X

OP-LinkSheetStatusError sc = (200 OR 3xx), ct 6= text/css sc 6= (200 OR 3xx) link rel=stylesheet href=URL sheet 7 7 X

OP-ImgDimension sc = (200 OR 3xx OR 4xx OR 5xx), ct =
image, bdy = image with dimension A

sc = (200 OR 3xx OR 4xx OR 5xx), ct =
image, bdy = image with dimension B

img src=URL height, width, nat-
uralHeight, natural-
Width

X X X

OP-VideoDimension sc = (200 OR 3xx OR 4xx OR 5xx), bdy
= video with dimension A

sc = (200 OR 3xx OR 4xx OR 5xx), body
= (video with dimension B OR body not
video)

video src=URL videoHeight,
videoWidth

X X X

OP-WindowDimension sc = (200 OR 3xx OR 4xx OR 5xx), bdy
= PDF

sc = (200 OR 3xx OR 4xx OR 5xx), body
6= PDF

frame src=URL height, width 7 7 X

OP-MediaDuration sc = 200, ct = (audio or video), bdy =
audio/video with duration A

sc = 200, ct = (audio OR video), bdy =
audio/video with duration B

audio/video
src=URL

duration X X X

OP-ImgCtMismatch sc = 2xx, ct = image sc = 4xx, ct 6= image img src=URL height, width, nat-
uralHeight, natural-
Width

X 7 X

OP-MediaCtMismatch sc = 200, ct = (audio OR video) ct 6= (audio OR video) audio/video src=URL networkState,
readyState, buffered,
paused, duration,
seekable

X X X

OP-FrameCount sc = 200, ct = text/html, bdy = HTML
with numFrames A

sc = 200, ct = text/html, xfo is disabled,
bdy = HTML with numFrames B

iframe src=URL, (form, iframe) contentWindow.length X X X

OP-MediaStatus sc = 2xx, ct = (audio OR video) sc = 4xx OR 5xx ct 6= (audio OR video) video/audio src=URL error.message X 7 7

OP-XfoObject sc = 200, xfo is disabled, ct = text/* sc = 200, xfo is enabled object data=URL contentDocument X 7 7

OP-XfoIFrame xfo is disabled sc = (2xx OR 3xx OR 4xx OR 5xx), xfo
is enabled

iframe src=URL contentDocument X 7 7

OP-WindowProperties sc = 200, ct = text/html, bdy = HTML
with window property A

sc = 200, ct = text/html, bdy = HTML
with window property B

window.open(), (form,
iframe)

frames.length X X X

postMessage bdy = postmsg A broadcast bdy = (postmsg B broadcast OR no
postmsgs broadcast)

iframe, window.open() receiveMessage() X X X

CSSPropRead sc = 200, ct = text/css, bdy = CSS with
rule A

sc = 200, ct = text/css, bdy = CSS with
rule B

link rel=stylesheet href=URL window.getComputedStyle() X X X

JSError sc = 200, ct = text/javascript, bdy = JS
with A no. of errors

sc = 200, ct = text/javascript, bdy = JS
with B no. of errors

script src=URL window.onerror() X X X

JSObjectRead sc = 200, ct = text/javascript, bdy = JS
with readable object A

sc = 200, ct = text/javascript, bdy = JS
with readable object B

script src=URL window.hasOwnProperty(),
prototype tampering,
global API
redefinition

X X X

CSPViolation sc = 3xx, Location = same origin sc = 3xx, Location = different origin iframe, frame, embed, applet,
video, audio, object, link,
script

{“csp- report”:} X X X

AppCacheError sc = 200 sc = (3xx OR 4xx OR 5xx) html
manifest=MANIFEST.appcache

AppCache error 7 X 7

Timing Load/Resp./Parse time A Load/Resp./Parse time B script, video, img,
XmlHttpRequest...

timing side-channel X X X

TABLE III: COSI attack classes.
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with JavaScript (JS) content (ct = text/javascript), and
return an error (sc = (4xxOR 5xx)) in another state. The
events fired by both types of responses are different (onload
in one case, onerror in the other) allowing to distinguish
the two responses. This attack class works on all browsers.
Among these 20 attack classes, 14 are new and for the other 6
attack instances had been previously proposed. Most of these
20 involve the type or disposition of the content, including
content-sniffing (X-Content-Type-Options). There are
also cases related to the X-Frame-Options header.

Object Properties. The next 13 attack classes leverage as
XS-Leak the readable properties of the included resource.
Out of these 13, 8 are new variations. For instance, in OP-
ImgDimension, if a SD-URL returns images with different
dimensions, the height and width properties allow to dif-
ferentiate the responses. While these two properties were
known to leak [65], our approach uncovers that similar attacks
exist using the naturalHeight and naturalWidth properties.
Interestingly, OP-ImgCtMismatch presents a similar attack
targeting SD-URLs that return an image and a non-image,
which works because for non-image resources some browsers
return the height and width of a broken image icon, triggering
a difference in dimensions. The term (form, iframe) in
classes OP-FrameCount, OP-WindowProperties captures that
it is also possible to include the resource using a form
tag (using the action attribute) to trigger a POST request
(specifying method as POST), and embedding the response
in an iframe (pointing target attribute to an iframe) [27].
All other attack classes leverage GET requests.

PostMessage. This class uses a novel XS-Leak that as far as
we know has not been previously mentioned. It can target
SD-URLs that return different broadcasted postMessages, or
a broadcast postMessage and no broadcast. It affects all three
browsers. To read the postMessages, the attack page can
include the SD-URL using the iframe tag if the page does not
use framing protection, or the window.open method if framing
protection is used. To identify a difference between responses,
it compares the number of broadcast messages, the message
origins, and the message content. The message content is
compared using the Jaro string distance [44] to account for
small session-specific or user-specific differences.

CSSPropRead. Another XS-Leak leverages SD-URLs that
return different CSS rules for different states. To identify the
differences, the attack page is designed to contain elements
affected by the differing rules and to check the inherited style
rules. Some attack instances in this class were previously
known [26], [35]. This class complements the OP-LinkSheet
and OP-LinkSheetStatusError classes, which can differentiate
between CSS and non-CSS responses.

JSError. When a SD-URL returns different JavaScript files,
where one contains a JS error and the other does not, this
difference can be detected using the window.onerror() callback
function. The original attack instance used window.onerror()
to read the line number and the type of JS error triggered [33].
But, since Cross-Site Script Inclusion (XSSI) attacks [32], [63]
abused the verbosity of window.onerror(), popular browsers
no longer return the error line. However, we find the attack
still works by comparing the number of errors triggered.

This class complements EF-StatusErrorIFrame, which allows
differentiating JS and non-JS responses.

JSObjectRead. Another XS-Leak for differentiating responses
that contain JS files checks the presence or absence of certain
readable objects in the included JS. The original attack in-
stance checked for global variables [32], but later attacks also
leveraged techniques such as prototype tampering and global
API redefinition [50].

CSPViolation. When a SD-URL redirects visitors to the same
origin in a state and to a different origin in another state, this
difference can be detected using a Content Security Policy
(CSP). The attacker configures its attack site with a CSP
policy for the attack page that states that any attempt to load
a resource from an origin different than the attack site should
send a violation report back to the attack site. This method
was originally proposed for leaking sensitive information in the
CSP report (e.g., in the path and subdomain) [40]. Browsers
then removed the path information from CSP reports, but the
attack still works by focusing on whether the CSP violation
report is received (redirection to different origin) or not (redi-
rection to same origin).

AppCacheError. When a SD-URL returns a success status
code (2xx) in one state and a redirection (3xx) or error (4xx,
5xx) in another, this difference can be detected through the
browser’s AppCache [9]. The attack page uses the manifest
attribute of the html tag to refer to an AppCache manifest file,
which includes the SD-URL in the list of URLs that should
be cached. This forces the browser to request the SD-URL.
If the SD-URL returns a success status code, an AppCache
cached event is triggered. If the SD-URL returns a redirection
or error, an AppCache error event is triggered instead. Lee
et al. [47] first presented this attack showing that it affected
five browsers. However, this XS-Leak currently only works in
Chromium-based browsers because Firefox and Edge no longer
allow cross-origin URLs to be cached using AppCache.

Timing. Multiple works have shown that timing differences
when a resource is requested from different states can be used
to distinguish those states [21], [27], [31], [56], [64]. Those
works focus on acquiring accurate timing information resistant
to changes in network conditions. We have incorporated into
Basta-COSI the ability to gather accurate timing information
using the video parsing leak in [64].

IV. BASTA-COSI

We have designed and implemented Basta-COSI, a tool
for assisting a security analyst in identifying, and generating
evidence of, COSI attacks in a target site. Basta-COSI focuses
on the COSI attack preparation phase. It takes as input a target
site, a set of state scripts defining states in the target site, and
the attack classes identified in Section III. It outputs attack
pages, which can be used by a security analyst for demon-
strating the existence of complex COSI attacks, involving more
than two states and supporting multiple browsers.

Setup. Basta-COSI needs network access to the target site,
which may be a local installation of an open-source web
application (e.g., GitLab, HotCRP) or a remote web site (e.g.,
linkedin.com, facebook.com). The analyst needs to be able
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Fig. 1: Basta-COSI architecture.

to create user accounts in the target site. Those accounts
should cover different account types and should be populated
with content, e.g., filling the user profile, creating a blog,
adding blog entries. For example, to test the open source
HotCRP conference management system, the analyst prepares
a local installation by creating a test conference and five user
accounts: administrator, two authors, and two reviewers. Then,
he submits a paper using each of the author accounts. Finally,
it assigns the paper submitted by the first author to the first
reviewer and the paper submitted by the second author to the
second reviewer.

Once the target site is configured, the analyst creates
state scripts that can be executed to automatically load a
specific state at a web browser, i.e., to log into the tested
web application using one of the created accounts or to log
out of an account. Basta-COSI currently supports state scripts
written using the Python Selenium WebDriver [6]. The web
browser to be used is an argument to the state script. In our
HotCRP example, the analyst creates six state scripts. The
first five scripts open a web browser, visit the login page, and
authenticate using one of the created accounts. The last script
logs in and then logs out to capture the logged out state.

Architecture. The architecture of Basta-COSI is shown in
Figure 1. It takes as input the state scripts, a set of browsers,
the configured target site, and a target state. It outputs an attack
page that leaks if a victim is in the target state at the target site.
Basta-COSI comprises of three modules: URL data collection,
attack vector identification, and attack page generation.

The URL data collection module crawls the target site to
discover URLs. It visits each discovered URL to collect its
response when visited from a specific state with a specific
browser. And, it compares the responses to the same URL
obtained from different states to identify SD-URLs that may
be candidates to be used in attack pages.

Next, the attack vector identification checks if any of
the SD-URLs can be attacked using the known COSI attack
classes. When needed, it visits each SD-URL using a set of
inclusion vectors to collect browser events that can only be
obtained with a specific inclusion method (e.g., postMessages),
or that cannot be easily obtained statically from the HTTP(S)
responses (e.g., JS errors, readable JS objects). For each SD-
URL that matches an attack class, it outputs an attack vector.

Finally, the attack page generation module builds an attack
page that enables identifying if the victim is in the target state

at the target site. The generated attack page may combine
multiple attack vectors to uniquely distinguish the target state
and to support multiple browsers. Attack pages for different
target states can be created by re-running the attack page
generation module, without re-running the previous modules.

A. URL Data Collection

The URL data collection module performs three main
tasks: crawling to discover URLs, collecting the responses for
each URL when visited from a specific state with a specific
browser, and identifying SD-URLs. The module is built on
top of the Spider crawler for OWASP ZAP [5]. The crawling
considers a URL to be part of the target site if it satisfies at
least one of three constraints: it is hosted at the target site
domain, it redirects to a URL hosted at the target site domain,
or it is part of a redirection chain involving a URL satisfying
any of the above two criterion.

Each discovered URL is visited from each input state and
using each input browser. Before visiting a URL, a state script
is executed to load the corresponding state in the browser.
The state scripts also allow collecting URLs only accessible
from authenticated states. Currently, Basta-COSI supports the
three most popular browsers: Chrome, Firefox, and Edge.
For each browser, it supports the latest version at the time
we started the implementation: Google Chrome 71.0.3578.98,
Mozilla Firefox 65.0.1, and Microsoft Edge 42.17134.1.0. The
module has a flexible design that allows adding support for
other browsers and browser versions. For each triplet (URL,
browser, state), it stores the full response (headers and body)
received from the server. URLs that return the same response
in each state are not state-dependent and thus cannot be used
in a COSI attack. To identify if a URL is state-dependent, a
similarity function is used that compares responses ignoring
non-deterministic fields such as the Date header or CSRF
tokens that may differ in each response. URLs that return the
same response (minus non-deterministic fields) in every state
are not state-dependent, and can be discarded.

To illustrate the tool we use our HotCRP running example
with only three state scripts: Reviewer1 (R1), Reviewer2 (R2),
and LoggedOut (LO). The goal of the analyst is to find a COSI
attack that reveals the reviewer of a specific paper. In this
scenario, the tester can ignore the administrator and author
accounts since an attacker (typically an author) would only
send emails with the attack page URL to the (non-chair) PC
members. The three identified URLs in our running example
are shown in Table IV. Each table entry shows the response
for the URL when visited from a specific state. For simplicity,
each response is summarized as a tuple of 4 field values: Status
Code (sc), Content-Type (ct), X-Frame-Options (xfo), and X-
Content-Type-Options (xcto). The URL /images/pdffx.png is
not a SD-URL since it returns the same response in all states.
Thus, it will be removed at this step. The other two URLs are
state-dependent since for each of them there exists at least one
pair of states whose responses are different.

B. Attack Vector Identification

The goal of the attack vector identification module is to
find, among all the SD-URLs discovered, the ones for which
a matching attack class is known, and thus can be used to
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URL Response Received at Different States
Reviewer1 (R1) Reviewer2 (R2) Logged Out (LO)

/testconf/images/pdffx.png sc = 200, ct = image/png, no
xfo, no xcto

sc = 200, ct = image/png, no
xfo, no xcto

sc = 200, ct = image/png, no
xfo, no xcto

/testconf/api.php/review?p=1 sc = 200, ct = text/html, no
xfo, xcto = nosniff

sc = 403, ct = text/html, no
xfo, no xcto

sc = 200, ct = text/html, no
xfo, no xcto

/testconf/offline.php?downloadForm=1 sc = 200, ct = text/html, no
xfo, xcto = nosniff

sc = 200, ct = text/html, no
xfo, xcto = nosniff

sc = 200, ct = text/html, no
xfo, no xcto

TABLE IV: Examples of URLs collected from HotCRP from three states. For simplicity, the response is represented with only
a subset of 4 field values: Status Code (sc), Content-Type (ct), X-Frame-Options (xfo), and X-Content-Type-Options (xcto).

generate attack vectors. Basta-COSI supports all attack classes
in Table VIII. Those attack classes can be split into two groups.
The first (static) group are attack classes for which it can
be determined, using solely the collected logs of HTTP(S)
responses, if a SD-URL matches the class. This group includes
all classes that capture differences in HTTP headers such as
Status Code, Content-Type, or X-Frame-Options. The second
(dynamic) group are attack classes for which matching a SD-
URL requires data difficult to obtain from the responses such
as JS errors, postMessages, and audio/video properties (e.g.,
width, height, duration). For this group, it is needed to visit
the SD-URL with different inclusion methods to collect the
missing data.

For each SD-URL and pair of states that return different
responses for that SD-URL, the module first checks if there
exist any matching static attack classes. For efficiency, if two
different state pairs produce the same responses, there is no
need to query the attack classes for the second pair. We
illustrate this process using the SD-URLs in Table IV. For
api.php, the responses from (R1, R2) match two static attack
classes: EF-StatusErrorObject (for Firefox and Edge), EF-
StatusErrorLink (for Chrome). Similarly, the responses from
(R2, LO) match the same two static attack classes as (R1,
R2). Finally, the states (R1, LO) match the static attack classes
EF-XctoObject and EF-XctoScript. The process repeats with
the other SD-URL (offline.php). Since states R1 and R2
return the same response, (R1, R2) can be ignored. For states
(R1, LO), the attack classes EF-XctoObject and EF-XctoScript
match. Finally, for states (R2, LO) the responses are the same
as for (R1, LO) and there is no need to check them again.

In our example, all state pairs can be distinguished using
a static attack class. If that was not the case, the module
would collect additional information to check the dynamic
attack classes. For this, the SD-URL is included in a set of
data collection pages hosted at a test web server. Each page
uses an inclusion method from one of the dynamic classes
and collects the required dynamic data for the class (e.g., use
script to collect JS errors and JS readable objects). Each data
collection page is visited with each browser and from every
state that returns a unique response.

The attack vector identification module outputs, for each
pair of states, a list of pairs (SD-URL, AttackClass) specifying
that an attack vector that uses the SD-URL and the attack class
can distinguish those two states for the browsers defined by
the attack class.

C. Attack Page Generation

Given a target state st and a set of target browsers B, the
goal of the attack page generation is to produce an attack page

Algorithm 1: Attack vector selection
inputs : Target state st, target browsers B, states S, attack vectors A
outputs: The list of selected attack vectors

1 outVectors ← [ ];
2 Sr ← S − st;
3 Ar ← filter(A, st);
4 Ar ← mergeStates(Ar);
5 P ← (si ∈ Sr , bj ∈ B);
6 while P 6= ∅, Ar 6= ∅, s > 0 do
7 V = score(Ar, P);
8 (s,a) ← (max(V),argmax(V));
9 if s > 0 then

10 outVectors.append(a);
11 P ← P - getCoveredPairs(a);
12 Ar ← Ar − a;
13 end
14 end
15 return outVectors, P ;

that combines attack vectors to uniquely distinguish st from
the other states, when visited by a browser in B. The set of
target browsers should be equal to or a subset of the set of
browsers input to Basta-COSI. This process comprises of two
steps: attack vector selection and attack page construction.

Algorithm 1 details the attack vector selection. It selects,
among all attack vectors, the ones needed to distinguish the
target state when visited by a target browser. The algorithm
first removes all attack vectors that do not include the target
state since they do not enable distinguishing st (Line 3). In our
HotCRP example, the target state is R1 and all attack vectors
for state pair (R2, LO) are removed. Then, it merges the states
of all remaining attack vectors with the same SD-URL and
attack class into a single attack vector that distinguishes St

from n ≥ 2 other states. In our example, the attack vectors
do not merge further. Next, it initializes a set P with all
pairs of states and browsers to be distinguished (Line 5). The
algorithm goes into a loop that at each iteration it identifies
the attack vector that covers most remaining pairs in P (Lines
6-14). The loop iterates until all pairs have been covered, no
attack vectors remain, or the remaining attack vectors do not
allow distinguishing the remaining pairs. To select an attack
vector, a score function is used that assigns higher scores to
attack vectors that cover more pairs in P , penalizing attack
classes that may interfere with other vectors (Line 7). For
example, an EventsFired attack vector using the script tag
may trigger CSP violation reports that interfere with a CSP
policy for CSPViolation that targets script resources. If the
score is zero, the loop breaks as the remaining attack vectors
do not allow distinguishing the remaining pairs. Otherwise, the
selected attack vector is appended to the output (Line 10), the
newly covered pairs are removed from P (Line 11), and the
attack vector is removed from the available list (Line 12).
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In our example, the first loop iteration selects the attack
vector ({LO}, offline.php, EF-XctoObject) as it covers
three pairs, differentiating the logout state for Chrome, Firefox
and Edge. The next loop iteration selects the attack vector
({R2}, api.php, EF-StatusErrorObject) as it covers two
other pairs, differentiating all remaining states for Firefox and
Edge. Finally, the last iteration chooses ({R2}, api.php,
EF-StatusErrorLink) which covers the remaining state for
Chrome. At that point, no more pairs remain to be covered,
and the algorithm outputs the selected attack vectors. The
algorithm also outputs the pair set P . If empty, the attack page
distinguishes the target state from all other states for all target
browsers. Otherwise, some states may not be distinguishable
for some target browsers.

For each attack class, the attack page generation module
has a template to implement the attack. For each selected
attack vector, it chooses one inclusion method in the attack
class, and applies the corresponding template with the SD-
URL. All instantiated templates are integrated into the output
attack page.

V. ETHICS

Our experiments do not target any real user of the live
sites. All testing on live sites is restricted to user accounts
that we created on those sites exclusively for this purpose.
The process of validating that the attacks found on open-
source web applications work on live installations of those
applications is similarly restricted to accounts owned by the
authors. The impact on live sites is limited to receiving a few
thousand requests for valid resources in the site. We take two
actions to limit the load on live sites from our testing. First, we
spread the requests over time to avoid spike loads. Second, we
disable the timing XS-Leak in our experiments, which requires
sending hundreds, or even thousands, of requests per SD-URL,
generating the highest load.

We have disclosed our attacks to the four web applications,
receiving confirmation of the issues from HotCRP, GitLab,
and GitHub, while OpenCart has not replied. The disclosure
process for the web sites is ongoing. All reported attacks have
been confirmed and some attacks have already been patched
(e.g., HotCRP, linkedin.com). We avoid providing SD-URLs
for attacks not yet patched. We have also reported our results
to the three browser vendors, as well as the Tor project.
We incorporate their feedback into our defenses discussion in
Section VII.

We acknowledge that publicly releasing Basta-COSI makes
it possible for attackers to misuse it to find COSI attacks.
However, we argue that this applies to any penetration testing
and vulnerability discovery tool (open source or commercial).
Other distribution models such as Software-as-a-Service could
potentially mitigate this risk, but would also limit the use-
fulness for the research community. We believe determined
attackers will still find a way to attack sites even without Basta-
COSI. Thus, we favor the benefit for defenders and the research
community.

VI. EXPERIMENTS

This section presents the evaluation of Basta-COSI on
four open source web applications (HotCRP, GitLab, GitHub

Enterprise, OpenCart) and the 58 web sites in the Alexa
Top 150 [15] where we could create user accounts. These
targets are popular, allow us to test on white-box (open source)
and black-box (deployed) scenarios, and cover services with
multiple user states. Section VI-A describes the results on
Web applications, Section VI-B on Alexa web sites, and
Section VI-C details some attacks found.

A. Evaluation on Web Applications

Table V summarizes the results of applying Basta-COSI
on the four web applications we installed locally. It details the
results for each tool module, as well as the COSI attacks found.
The data collection part shows the number of input state scripts
provided to Basta-COSI, the number of URLs crawled, and the
number of SD-URLs identified. The attack vector identification
part shows the total number of attack vectors identified, the
number of state pairs they cover, and the number of XS-Leaks
they use. The attack page generation part shows the number
of states uniquely distinguished (UD) from other states, the
number of states partially distinguished (PD) excluding UD
states, and the minimum/average/maximum attack vectors in
the attack pages. Finally, the attacks found part shows the type
and browsers affected for the identified attacks.

Depending on the target, we created 3–6 state scripts to
use Basta-COSI. One script always corresponds to the logged
out (LO) state and the others are target-specific. For example,
for GitLab the other 5 states are for maintainer, developer,
reporter, guest (read-only access), and a user with no read
access to the repository. Like a fuzzing tool, Basta-COSI will
try to find attacks until the allocated time budget runs out.
We let Basta-COSI run for a maximum of 24 hours on each
target, although after a few hours the crawling typically does
not find any new URLs. The data collection results show that
SD-URLs are very common, on average 68% of the discovered
URLs are SD-URLs (and up to 99% in GitHub).

Basta-COSI finds between 58 and 992 attack vectors in
each target using up to 3 XS-Leaks. The results show that on
average the generated attack pages use more than one attack
vector. Account type and deanonymization attacks always
require multiple vectors, while login detection is oftentimes
possible with a single vector. This highlights the importance
of our approach to combine attack vectors in order to handle
more than two states and multiple browsers. Some states can
be uniquely identified, i.e., distinguished from any other state,
and the rest can be partially distinguished. We found no state
that could not be distinguished at all. It is important to note
that partially distinguishable states can also be used in attacks.
For example, not being able to differentiate the administrator
from a normal user does not matter if the administrator is
not targeted by the attack, i.e., not sent the attack page URL.
Overall, Basta-COSI finds attacks on all four applications:
login detection attacks on all four, deanonymization attacks
on three, and account type identification on two.
B. Evaluation on Web Sites

We test sites from the Alexa Top 150 that are not duplicates
(e.g., amazon.com vs. amazon.de) and where we could create
free accounts. This excludes sites without user accounts, that
required a phone number in a specific area, or that demanded
credit card information. This leaves us with 58 sites, of which
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Data Collection Attack Vector Identification Attack Page Generation Attacks Found
Target SD State UD PD Vectors Login Account Access

States URLs URLs Vectors Pairs XS-Leaks States States Min Avg Max Detection Type Deanon. Detection
HotCRP 5 68 65 116 7 3 1 4 1 1.6 3 C,E,F - C,E,F -
GitLab 6 52 19 236 14 1 2 4 1 1.9 2 C,E,F C,E,F C,E,F -
GitHub 4 91 90 992 6 1 4 0 1 1.8 2 C,E,F C,E,F C,E,F -
OpenCart 5 51 32 72 7 1 2 3 1 1.1 2 C,E,F - - -

TABLE V: Basta-COSI evaluation results. For every target application and site, it shows the data for each tool module, as well
as the type and browsers affected for the attacks found. Browsers are abbreviated as Chrome (C), Firefox (F), and Edge (E).

Attack Type Tested Vulnerable

Login Detection 58 58
Deanonymization 58 36
SSO Status 12 12
Access Detection 11 5
Account Type 3 3
Total Sites 58 58

TABLE VI: Web sites vulnerable to each attack type

Attack Br EF OP PM CSS JSE JOR CSP ACE

Login
Detect.

C 2457 2532 9 0 2 0 885 63
F 1587 1511 9 0 2 0 424 0
E 676 1286 9 0 2 0 434 0

Account
Type

C 175 82 0 0 0 0 126 3
F 173 85 0 0 0 0 2 0
E 39 36 0 0 0 0 12 0

Deanon.
C 644 546 2 0 0 0 31 17
F 447 420 2 0 0 0 79 0
E 201 288 2 0 0 0 81 0

Access
Detect.

C 98 12 0 0 0 72 0 0
F 1 10 0 0 0 0 0 0
E 3 10 0 0 0 0 0 0

SSO
Status

C 0 0 0 0 0 0 12 0
F 0 0 0 0 0 0 12 0
E 0 0 0 0 0 0 12 0

(Legend: EF=EventFire; OP=ObjectProperties; PM=PostMessage; CSS= CSSPropRead;
JSE=JSError; JOR=JSObjectRead; CSP=CSPViolation; ACE=AppCacheError)

TABLE VII: Attack vectors found per XS-Leak and browser.

only 12 support SSO, and only 3 have multiple types of free
accounts (excluding the administrator account that we cannot
obviously create). For access detection, we focus on privacy
sensitive sites, more specifically adult sites, on the Alexa Top
150, regardless if they have user accounts.

Table VI summarizes the number of tested and vulnerable
sites for each attack type. For login detection, SSO status, and
account type identification, Basta-COSI discovers XS-Leaks
against all tested sites. In addition, it finds deanonymization
attacks in 57% of the sites and access detection attacks in
45%. The results show that login detection attacks are easiest
to find, but that by combining multiple attack vectors it is
possible to find more powerful attacks targeting more than
two states in 72% of the sites. Regarding false positives, we
rarely observed them in two situations. One was due to Basta-
COSI waiting 6 seconds to collect events and some pages being
slower to load. The other one was when Basta-COSI sent too
many queries and a site started replying with CAPTCHAs. We
expect that increasing the timeout and distributing the queries

over multiple IPs would eliminate those false positives. We
do not evaluate false negatives, as we lack ground truth of the
COSI attacks present in the targets. However, we acknowledge
that, like any testing tool, false negatives are possible, e.g.,
Basta-COSI can only find COSI attacks that are instances of
the 40 attack classes it supports.

The support in Basta-COSI for multiple XS-Leaks and
multiple browsers allows to compare the prevalence of the
XS-Leaks, as well as the attack surface of the browsers,
on the same set of SD-URLs, i.e., independently of the
crawler’s coverage. Table VII details the distribution of attack
vectors per XS-Leak for each attack type and browser pair.
XS-Leak prevalence widely varies. Most attack vectors use
EventsFired, Object Properties, and CSPViolation XS-Leaks.
Our novel postMessage XS-Leak ranks sixth out of eight XS-
Leaks, producing attack vectors on 11 different sites including
blogger.com, ebay.com, reddit.com, and youtube.com. The
least prevalent XS-Leak is CSSPropRead for which Basta-
COSI does not find any attack vector, showing that SD-URLs
on CSS content that leak user state are not common. The
comparison also shows that Chrome has a larger attack surface,
ranking first in number of attack vectors in all eight XS-Leaks.

C. Example Attacks

This section details some of the attacks Basta-COSI found
that involve more than two states. All attacks work on the three
tested browsers, unless specifically noted.

HotCRP. Basta-COSI found an attack for determining whether
the victim is a reviewer of a specific paper, which we have used
as running example. The attack page (Listing 1) uses three
attack vectors, one for login detection on all three browsers,
and two (one for Chrome and another for Firefox/Edge)
to identify if the victim submitted a review for the target
paper. To launch the attack, the attacker collects the email
addresses of the program committee members and sends them
a spear-phishing email to convince them to click on the attack
page URL. Since the attack was found on a local HotCRP
installation, to test it on conferences hosted at hotcrp.com,
we had to update the SD-URLs with the proper domain and
conference name. We verified the attack and reported it to the
HotCRP developer, who confirmed the issue and has released
a patch [10].

GitLab and GitHub. Attacks are found in both GitLab and
github.com that allow determining if the victim is the owner
of a repository (or of a snippet). Both attacks first use a login
detection attack. If the victim is logged in, the attack page
uses an EventFire attack class using a SD-URL for editing
the repository settings (or the snippet) to detect if the victim

11

blogger.com
ebay.com
reddit.com
youtube.com
hotcrp.com
github.com


has administrative rights. For GitHub Enterprise installations,
another attack allows distinguishing the administrator from
other users by including the URL for accessing staff tools.

LinkedIn. A CSPViolation attack allows distinguishing the
account type (free or premium) using the SD-URL https:
//www.linkedin.com/cap/. This attack has already been fixed
following our disclosure. A second attack allows determining
if the victim owns a specific LinkedIn profile using the OP-
WindowProperties attack class. The underlying cause of this
attack is that the number of frames in a LinkedIn profile page
is 3 when visited by the owner of the profile, and 4 otherwise.

Blogger. Multiple deanonymization attacks are found for de-
termining if the victim is the owner of a specific blog. The
attacker needs to know the blogID of the target victim, which
can be found on the HTML source of the target blog. The
attacks combine a CSPViolation login detection attack vector
with another deanonymization attack vector from different
attack classes (e.g., postMessage, EF-CtMismatchScript). This
shows how attacks can combine multiple attack vectors using
different XS-Leaks, highlighting the value of our generic
approach not being specific to any XS-Leak.

IMDB. A deanonymization attack allows determining if the
victim owns a specific IMDB account using a SD-URL that
contains the user identifier. This attack can determine if the
visitor is a specific person from the film industry by including
the user identifier obtained from the profile for that person.

Amazon. CSPViolation attacks are found that leak if the
victim is using the Amazon Kindle Direct Publishing (KDP)
service, or has accepted the KDP terms and policies. That
information could be used for targeted advertising, e.g., to
show advertisements of kindle books to the victim.

Pornhub. Attacks are found using the OP-Window-Properties
and OP-FrameCount for determining if the victim is the owner
of a specific username, thus enabling deanonymization of the
account in a closed-world setting. The underlying reason for
the OP-FrameCount attack is similar to that of the LinkedIn
attack, but mounted on Pornhub’s playlist URLs.

Pinterest. A CSPViolation attack can be mounted with the
Facebook SSO initiation URL for determining whether the
victim authenticated into Pinterest using its Facebook account.
A similar attack was found for Google’s SSO.

Imgur. An attack based on EF-StatusErrorScript can be used
to determine if the victim uploaded an image (e.g., copy-
righted, taken without permission) to this image sharing site.
The vendor has awarded us a bug bounty for this report [46].

VII. DEFENSES AGAINST COSI ATTACKS

This section discusses existing and upcoming defenses
against COSI attacks.

SameSite cookies. COSI attacks leverage the automatic
inclusion of HTTP cookies [19], client-side certificates [45],
and HTTP Authentication credentials [30] in requests sent by
web browsers, known as the ambient authority problem in
browsers [25]. Web sites can use the SameSite attribute
in a Cookie header to prevent the browser from sending

that cookie in cross-site requests [43], [67]. This defense
disables SD-URLs whose responses are based on states saved
in cookies. On the other hand, it does not prevent leakage by
HTTP Authentication credentials and client-side certificates,
it needs to be set for each cookie; it may be challenging to
deploy in web sites with legitimate cross-origin requests [58];
and its implementation in browsers can have flaws [29]. When
we disclosed our results to the browser vendors, we were told
they plan to address COSI attacks by marking all cookies by
default as SameSite=Lax, unless the site specifically dis-
ables them with SameSite=None, or makes it stricter with
SameSite=Strict [69]. This change is already planned
for Chrome [11] and Firefox [12]. However, this defense will
initially ship behind a configuration option since it may affect
functionality that requires cross-origin requests.

Session-specific URLs. Web sites can use URLs that include
a session-specific, non-guessable, token. The token must be
cryptographically bound to the session identifier (e.g., the hash
of the identifier), and the web site must verify this relationship
for all HTTP requests. Session-specific URLs prevent the
attacker from identifying SD-URLs for the victim’s session,
avoiding COSI attacks. This defense does not depend on
browser vendors and can be deployed right away. On the other
hand, it can be costly to deploy, increases complexity, may
impact performance, and the web site must ensure that the
tokens cannot be leaked or brute forced [25].

Cross-Origin-Resource-Policy. An emerging HTTP response
header that allows web sites to ask browsers to disallow cross-
origin requests to specific resources [2]. The request is not
prevented, rather the browser avoids leakage by stripping the
response body. Currently supported by Chrome and Safari.

Fetch metadata. An emerging set of HTTP request headers
that send additional provenance data about a request [68], e.g.,
the HTML element triggering a cross-site request. Currently
supported by Chrome. A web site can use this information to
design policies that block potentially malicious requests. e.g.,
inclusion of a non-image resource with an img tag.

Cross-Origin-Opener-Policy. There is ongoing discussion on
a new HTTP response header to prevent malicious web sites
from abusing other web sites by opening them in a window [3].
This defense could protect against COSI attack classes that use
the window.open inclusion method (e.g. OP-Window Proper-
ties, postMessage).

Tor Browser. The Tor Browser takes preventive measures
against timing-based COSI attacks [54]. Additionally, it iso-
lates the browser’s state based on the URL in the address bar.
Therefore, it does not attach cookies and Authorization
header values to cross-origin HTTP requests generated by
inclusions using HTML tags. However, the state isolation is
not enforced for the window.open method, so authentication
headers are still attached to HTTP requests generated using
this inclusion method. Therefore, Tor Browser users are still
vulnerable to OP-WindowProperties and the new postMessage
attack class we discovered.

SD-URL patching. When reporting our attacks, we mentioned
SameSite cookies as a good defense in terms of protection,
since it tackles the root cause of COSI attacks, and cost
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to deploy. However, the developers that already patched our
attacks did not take that suggestion and instead applied a fix
specific to the reported SD-URLs. For example, the HotCRP
developer mentioned that SameSite cookies is not available
in PHP until PHP 7.3, and instead modified the code to
always return a 200 HTTP status code with JSON content.
This fixes our attack, but it will not fix future attacks on other
status codes and content types. In another example, LinkedIn
patched our reported user deanonymization OP-FrameCount
attack by making sure that the reported SD-URL returned the
same number of frames for all users. These examples show
that developers currently consider URL-specific fixes a quick
solution, despite its lack of generality.

VIII. DISCUSSION

This section discusses limitations of our approach and
possible future improvements.

Preparation overhead. To use Basta-COSI, the tester first
needs to create accounts at the target site and provide state
scripts that use those accounts. Similar overhead is required by
other web security testing tools, when they need to examine
the logged in parts of a web site. Furthermore, Basta-COSI
is designed for web site administrators to test their own sites.
We believe the cost of creating test accounts for your own site
is a reasonable one-time effort, as these accounts can then be
reused for other tests. In fact, we expect many sites to already
have such test accounts in place for other types of testing.

Support for other browsers. Basta-COSI currently supports
the three most popular browsers: Chrome, Firefox, and Edge.
We did not include support for Safari because we run our
experiments on Windows and Apple stopped releasing Safari
for Windows in 2012. Adding support for other browsers is
a matter of additional engineering work. Of particular interest
would be adding support for mobile platform browsers given
their popularity and that COSI attacks on those browsers
have been little explored. Support for mobile browsers in
Basta-COSI could be achieved by integrating a mobile testing
platform, e.g., Appium [1].

Support for other crawlers. Basta-COSI uses ZAP’s Spider
module [7] for crawling the target site. The coverage of this
crawler may be limited on JavaScript-intensive web sites. It is
likely that some SD-URLs were not discovered by the crawler
for this reason, which may have caused COSI attacks to go
unnoticed. Basta-COSI’s modular design should easily allow
to integrate other crawlers to increase coverage. Still, despite
the potentially limited crawling, Basta-COSI was able to find
COSI attacks in all tested targets.

Dynamic page element detection. To identify SD-URLs,
Basta-COSI removes dynamic page elements from HTTP
responses. Our detection of some dynamic page elements, e.g.,
CSRF tokens, is based on heuristics that could introduce errors.
However, there are a couple of mitigating reasons, which may
explain why we did not observe such errors in our testing.
First, even if a URL is wrongly identified as a SD-URL, Basta-
COSI may later discard it as non-exploitable. Second, dynamic
elements often do not impact the leak methods (e.g., events
fired, properties read).

Timing. Basta-COSI supports the timing XS-Leak through the
video parsing technique described in [64]. However, we did
not use the timing XS-Leak in our experiments, which may
have prevented Basta-COSI from finding further attacks. The
main reason for disabling the timing XS-Leak is that in order
to attain the same level of reliability as other attack classes,
it requires sending hundreds [64], or even thousands [13], of
HTTP requests per SD-URL. This increases the load at the
target and causes some web sites to respond with defenses
(e.g., CAPTCHAs, blocking) that hamper the testing. We
noticed this initially on linkedin.com. In addition to the high
load, we observed another three challenges in using the timing
XS-Leak. First, we cannot generalize a timing attack. With
timing, we always need to measure the timing for each URL
in the target site; we cannot reuse what we learn from one
attack in new attacks. Second, timing information is harder to
use as the number of states increases. For example, if a URL
allows downloading a file only to its owner, there may not be
a clear timing difference between an unauthenticated user and
an authenticated one that is not the owner. Finally, it is hard
to combine in the same attack timing with the non-timing XS-
Leaks. Due to these challenges by default Basta-COSI does
not use the timing XS-Leak. We leave applying timing leaks
to more than two states for future work.

Discovering new XS-Leaks. We have systematically explored
existing COSI attacks and the XS-Leaks they use, generalizing
them into COSI attack classes. In this process, we have
discovered a novel postMessage XS-Leak. However, it is very
likely that there exist more, currently unknown, XS-Leaks
leveraging other browser APIs. Systematically exploring the
browser API surface to identify all possible XS-Leaks remains
an open challenge, which we plan to explore in future work.

IX. RELATED WORK

Prior COSI attack instances. Table VIII summarizes the
23 prior works proposing COSI attack instances we have
identified. The first instance of a COSI attack was proposed in
2006 by Grossman and Hansen [36]. It was a login detection
attack using the img tag and the EventsFired XS-Leak (EF-
CtMismatchImg attack class). Since then, EventFired attacks
have been shown to apply to other HTML tags and content
types [22], [34], [35], [65]. Recently, Staicu and Pradel [61]
showed that EventsFired attacks can be combined with share-
able images to deanonymize users of image sharing services.

In another blog post in 2006, Grossman [33] introduced
the first instance of the JSError attack class that leverages the
type and line number of errors triggered when a JavaScript
resource is included using the script tag. This attack was then
demonstrated on popular sites like Amazon [59]. Inspired by
Grossman’s attacks, Evans [26] presented the first instance
of the CSSPropRead attack class, leveraging the presence of
certain objects and variables from an included JS resource. In
a 2012 post Grossman presented multiple attack instances in-
cluding the first instances of the JSObjectRead attack class and
the first attack using the readable object properties XS-Leak
[35]. Lekies et al. [50] extended the JSObjectRead class with
more techniques such as prototype tampering and showed that
JSObjectRead attacks can be defended by making the URLs
of script files unpredictable and including JS parser-breaking
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Reference Year Type Attack Classes Browsers

Grossman &
Hansen [36]

2006 Blog EF-CtMismatchImg -

Grossman [33] 2006 Blog JSError F

Shiflett [59] 2006 Blog JSError F

Bortz et al. [21] 2007 Paper Timing F, S

Grossman [34] 2008 Blog EF-CtMismatchScript,
EF-CtMismatchImg

F

Evans [26] 2008 Blog CSSPropRead F

Evans [27] 2009 Blog Timing -

Cardwell [22] 2011 Blog EF-StatusErrorScript,
EF-CtMismatchImg

C, F, IE

Grossman [35] 2012 Blog EF-StatusErrorIFrame,
EF-CtMismatchScript,
OP-LinkSheet, OP-
FrameCount, EF-
CtMismatchImg,
JSObjectRead

F

Homakov [40] 2013 Bug CSPViolation C, F, IE

Gelernter &
Herzberg [31]

2015 Paper Timing -

Goethem et al. [64] 2015 Paper Timing, EF-
CtMismatchVideo

C

Lekies et al. [50] 2015 Paper JSObjectRead C

Lee et al. [47] 2015 Paper AppCacheError C

Schwenk et al. [57] 2017 Paper OP-LinkSheet IE, E

Masas [52] 2018 Blog OP-WindowProperties C

Yoneuchi [71] 2018 Blog CSPViolation F

Gulyas et al. [38] 2018 Paper CSPViolation C

Acar [14] 2018 Paper OP-MediaStatus C, F

Staicu & Pradel [61] 2019 Paper EF-CtMismatchImg C, F

Masas [55] 2019 Blog OP-WindowProperties C

Sanchez et al. [56] 2019 Paper Timing C

XSLeaks [65] 2019 Project EF-CtMismatchImg,
OP-FrameCount,
CSPViolation, Timing,
EF-CtMismatchObject,
OP-ImgDimension,
OP-MediaDuration,
OP-WindowProperties,
EF-CacheLoadCheck

C, F, E

(Legend: F=Firefox; S=Safari; C=Chrome; IE=Internet Explorer; E=Edge; -= we
couldn’t find a browser mentioned in the article)

TABLE VIII: Summary of previously proposed COSI attacks

strings in dynamic JS files. After Grossman’s initial attack
using the FrameCount readable object property, instances of
attack classes leveraging other properties (e.g., window frame
count, width, height, duration, cssRules, media error) have
been proposed [14], [52], [55], [57], [65].

Homakov [40], [41] showed that cross-origin and sub-
domain redirections can be detected by abusing CSP. This
approach has been used for login detection and fingerprinting
attacks [38], [71]. Lee et al. showed that the AppCache feature
can be abused to differentiate between 200 status responses and
redirection or error responses [47]. Recently, Staicu et al. [61]
showed that a deanonymization attack can be mounted using
images uploaded to GitHub. We generalized this attack on
GitHub also to non-image resources. Bortz et al. [21] showed
that the timing of the events fired when a resource is loaded
using the img HTML tag is a good metric to determine the
state of a user at a target site. Evans [27] and Gelernter and

Herzberg [31] applied similar approaches for mounting cross-
site search attacks. Goethem et al. [64] showed that the parsing
time of the included resources is a better alternative and that
the Referer and Origin headers can help preventing such
attacks. Recently, Sanchez et al. [56] have measured the scale
of timing-based login and access detection attacks.

This work shows that the above are all instances of COSI
attacks, and demonstrates how to build complex COSI attacks
that handle more than two states and multiple browsers.

Browser history sniffing attacks. Multiple works have studied
history sniffing attacks that use browser side channels to
determine whether a user has accessed certain web sites [23],
[28], [53], [60], [70]. To defend against history sniffing attacks
Jackson et al. proposed to increase the isolation of different
origins [42] and Wondracek et al. proposed adding non-
predictable tokens in URLs and using the POST method [70].
History sniffing attacks are similar to COSI attacks in lever-
aging a browser side channel, but fundamentally differ in the
absence of a target site and in that the attack page does not
send cross-origin requests.

Attacks using postMessage. Guan et al. [37] analyzed privacy
issues in postMessages broadcasted by popular web sites and
Stock et al. showed that usage of broadcasted postMessages
has been increasing [62]. Our postMessage XS-Leak leverages
differences between broadcasted postMessages in SD-URLs
and does not require that messages contain sensitive data.

X. CONCLUSION

We have presented COSI attacks as a comprehensive cat-
egory and have introduced a novel approach to identify and
build complex COSI attacks that differentiate more than two
states and support multiple browsers. Our approach combines
multiple attack vectors, possibly using different XS-Leaks. To
enable our approach, we have introduced the concept of COSI
attack classes and have proposed novel techniques to discover
attack classes from existing instances of COSI attacks. In this
process, we have discovered a novel browser XS-Leak based
on window.postMessage. We have implemented our approach
into Basta-COSI, a tool to find COSI attacks in a target web
site. We have applied Basta-COSI to test four stand-alone web
applications and 58 popular web sites, finding COSI attacks
against each of them.
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