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ABSTRACT
Community detection in graphs, data clustering, and local pattern

mining are three mature fields of data mining and machine learning.

In recent years, attributed subgraph mining is emerging as a new

powerful data mining task in the intersection of these areas. Given

a graph and a set of attributes for each vertex, attributed subgraph

mining aims to find cohesive subgraphs for which (a subset of)

the attribute values has exceptional values in some sense. While

research on this task can borrow from the three abovementioned

fields, the principled integration of graph and attribute data poses

two challenges: the definition of a pattern language that is intuitive

and lends itself to efficient search strategies, and the formalization

of the interestingness of such patterns. We propose an integrated

solution to both of these challenges. The proposed pattern lan-

guage improves upon prior work in being both highly flexible and

intuitive. We show how an effective and principled algorithm can

enumerate patterns of this language. The proposed approach for

quantifying interestingness of patterns of this language is rooted

in information theory, and is able to account for prior knowledge

on the data. Prior work typically quantifies interestingness based

on the cohesion of the subgraph and for the exceptionality of its

attributes separately, combining these in a parameterized trade-off.

Instead, in our proposal this trade-off is implicitly handled in a prin-

cipled, parameter-free manner. Extensive empirical results confirm

the proposed pattern syntax is intuitive, and the interestingness

measure aligns well with actual subjective interestingness.

KEYWORDS
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1 INTRODUCTION
The availability of network data has surged both due to the success

of social media and ground-breaking discoveries in experimental

sciences. Consequently, graph mining is one of the most studied

tasks for the data mining community. The value of graphs stems

from the presence of meaningful relationships among the data ob-

jects (the vertices). These can be explored by approaches as different

as graph embeddings[7]—which map the nodes of a graph into a

low dimensional space while preserving the local and global graph

∗
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structure as well as possible—, community detection[9]—the dis-

covery of groups of vertices that somehow ‘belong together’—, or

subgraph mining—the identification of informative subgraphs.

Besides the relational structure, graphs may carry information

in the form of attribute-value pairs on vertices and/or edges. Such

graphs are called attributed graphs[16, 18, 20]. We focus here on

graphs with attribute-value pairs on vertices (vertex-attributed

graphs). Mining interesting subgraphs in attributed graphs is chal-

lenging, both conceptually and computationally. A prominent prob-

lem is defining the interestingness of a subgraph. Desirable proper-

ties of subgraph would be that it is cohesive (the attribute values

of the vertices are similar) and that the vertices form an easy to

describe pattern in the graph (e.g., vertices should be close to each

other). A specific form of subgraph mining is to look for excep-

tional subgraphs, i.e., subgraphs whose attribute values are cohesive

within the subgraph but exceptional in the full graph.

Few works in this direction exist. For example Atzmueller et

al.[1] study mining communities (densely connected subgraphs)

that can also be described well in terms of attribute values, while

Bendimerad et al. [2] look for exceptional subgraphs that are con-

nected. Various quality measures are used in the first work and the

second relies on Weighted Relative Accuracy. We introduce a new

generically applicable interestingness measure for exceptional sub-

graph patterns based on Information Theory which is more flexible

and can incorporate prior knowledge about the graph to steer the

scoring of subgraph patterns. Besides, while previous works use

certain hard constraints to arrive at subgraphs that are somehow

interpretable, we integrate the interpretability into the interesting-

ness measure. Hence, the trade-off between informativeness and

interpretability can be made in a principled manner.

More specifically, we consider the problem to identify informa-

tive subgraphs that can be concisely described. The informativeness

of a subgraph depends on the number of vertices it covers (more is

better) and how surprising the statistics (attribute values) of those

vertices are. Surprise is important because showing the user statis-

tics they expect to see does not teach them anything. Vertices that

are spread out over the graph, or that share no statistics cannot

be summarized well, so the end-user cannot generalize over the

structure of the vertices in a pattern and hence the graph structure

is effectively transmitted to a user without any compression. Here

instead, we look for subgraphs that are both homogeneous and
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P1: {food}+
P2: {professional, nightlife, outdoors, college}+

P3: {nightlife, food}+{college}−

Figure 1: Example results on a graph based on Foursquare
data covering the presence of various types of venues in Lon-
don. P1: around the orange block (west/south of Hyde Park)
there are ‘surprisingly’ many food establishments, except in
the centre of that area (which is average). P2: in the City
several types of venues are consistently overrepresented.
P3: around Hackney there is a strip of blocks with lots of
nightlife and food venues but limited educational venues.

localized, hence possess shared properties which can be exploited

to produce concise descriptions.

Fig. 1 shows example patterns from our method, applied to a

setting where we want to explore the district structure of cities. The

patterns should be interpreted as follows: certain attributes have

surprisingly high/low values (marked +/− respectively) in the given
neighbourhoods as compared to a background model. We ensure

the regions are localized by forcing them to have a description of the

form “all vertices that are within distance d1 of vertex x AND within
distance d2 of vertex y AND etc.” ; e.g., in pattern P3 of Fig. 1, the
covered areas (green blocks) are the intersection of blocks within

distance two of either purple block.

Contributions. We present a pattern syntax for cohesive sub-

graphs with exceptional attributes (Sec. 2). We formalize their sub-

jective interestingness in a principled manner using information

theory, accounting for both the information they provide, as well as

their interpretability (Sec. 3). We study how to mine such subgraphs

efficiently (Sec. 4). We provide a thorough empirical study on real

data that evaluates (1) the relevance of the subjective interesting-

ness measure compared to state-of-the-art methods, and (2) the

efficiency of the algorithms (Sec. 5). We discuss related work in

Sec. 6 and the conclusions are presented in Sec. 7.

2 COHESIVE SUBGRAPHS WITH
EXCEPTIONAL ATTRIBUTES

Before formally introducing the pattern language we are interested

in, let us establish some notation.

Notation An attributed graph is denoted G = (V ,E, Â), where
V is a set of n vertices, E ⊆ V ×V is a set ofm edges, and Â is a set

of p numerical attributes on vertices (formally, functions mapping

a vertex onto an attribute value), with â(v) ∈ Doma denoting the

value of attribute â ∈ Â on v ∈ V . We use hats in â and Â to signify

the empirical values of the attributes, whereas a and A denote

(possibly random) variables over the same domains. We also define

the function Nd (v) to denote the neighborhood of range d of a

vertex v , i.e., the set of vertices whose geodesic distance to v is at

most d :

Nd (v) = {u ∈ V | dist(v,u) ≤ d}.

Cohesive Subgraphs with Exceptional Attributes (CSEA)
As described in the introduction, we are interested in patterns that

inform the user that a given set of attributes has exceptional values

throughout a set of vertices in the graph.

Thus, and more formally, a CSEA pattern is defined as a tuple

(U , S), where U ⊆ V is a set of vertices in the graph, and S is a set

of restrictions on the value domains of the attributes of A, or more

specifically, S = {[ka , ℓa ] | a ∈ A}. A pattern (U , S) is said to be

contained in G iff

∀[ka , ℓa ] ∈ S and ∀u ∈ U , ka ≤ â(u) ≤ ℓa . (1)

Informally speaking, a CSEA pattern will be more informative if

the ranges in S are smaller, as then it conveys more information to

the data analyst. We will make this more formal in Section 3.1.

At the same time, a CSEA pattern (U , S) will be more interesting

if its description is more concise in some natural easier-to-interpret
definition. Thus, along with the pattern language, we must also

specify how a pattern from this language will be intuitively de-

scribed.

To this end, we propose to describe the set of vertices U as a

neighborhood of a specified range from a given specified vertex, or

more generally as the intersection of a set of such neighborhoods.

For enhanced expressive power, we additionally allow for the de-

scription to specify some exceptions on the above: vertices that do

fall within this (intersection of) neighborhood(s), but which are to

be excluded from U . Exceptions are a detriment to the interesting-

ness of a pattern, but we can discount these naturally.

A premise of this paper is that this way of describing the setU is

intuitive for human analysts, such that the length of the description

of a pattern, as discussed in detail in Sec. 3.2, is a good measure

of the complexity to assimilate or understand it. Our qualitative

experiments in Sec. 5 do indeed confirm this is the case.

3 THE SUBJECTIVE INTERESTINGNESS OF A
CSEA PATTERN

The previous sections already hinted at the fact that we will formal-

ize the interestingness of a CSEA pattern (U , S) by trading off its

information content with its description length. Here we show how

the FORSIED framework for formalizing subjective interestingness

of patterns, introduced in [3, 4], can be used for this purpose.

The information content depends on both U and S . It is larger
when more vertices are involved, when the intervals are narrower,

and when they are more extreme. We will henceforth denote the

information content as IC(U , S). The description length depends on

U only (as the attribute ranges require a fixed description length),

and will be denoted as DL(U ). The subjective interestingness of a
2



CSEA pattern (U , S) is then expressed as:

SI(U , S) = IC(U , S)
DL(U ) .

One of the core capabilities of the FORSIED framework is that

it quantifies the information content of a pattern against a prior

belief state about the data. It rigorously models the fact that the

more plausible the data is (subjectively) according to a user or

(objectively) under a specified model, the less information a user

receives, and thus the smaller the information content ought to be.

This is achieved by modeling the prior beliefs of the user as the

Maximum Entropy (MaxEnt) distribution subject to any stated prior

beliefs the user may hold about the data. This distribution is referred

to as the background distribution. The information content IC(U , S)
of a CSEA pattern (U , S) is then formalized as minus the logarithm

of the probability that the pattern is present under the background

distribution (also called the self-information or surprisal) [8]:

IC(U , S) = − log(Pr(U , S)).

In Sec. 3.1, we first discuss in greater detail which prior beliefs

could be appropriate for CSEA patterns, and how to infer the cor-

responding background distribution. Then, in Sec. 3.2, we discuss

in detail how the description length DL(U ) can be computed.

3.1 The information content of a CSEA pattern
Positive integers as attributes For concreteness, let us consider
the situation where the attributes are positive integers (a : V →
N, ∀a ∈ A), as will be our main focus throughout this paper.

1

For example, if the vertices are geographical regions (with edges

connecting vertices of neighboring regions), then the attributes

could be counts of particular types of places in the region (e.g. one

attribute could be the number of shops). It is clear that it is less

informative to know that an attribute value is large in a large region

than it would be in a small region. Similarly, a large value for an

attribute that is generally large is less informative than if it were

generally small. The above is only true, however, if the user knows

(or believes) a priori at least approximately what these averages are

for each attribute, and what the ‘size’ of each region is. Such prior

beliefs can be formalized as equality constraints on the values of

the attributes A on all vertices, or mathematically:∑
A

Pr(A)
(∑
a∈A

a(v)
)
=

∑
â∈Â

â(v), ∀v ∈ V ,

∑
A

Pr(A)
( ∑
v ∈V

a(v)
)
=

∑
v ∈V

â(v), ∀a ∈ A.

The MaxEnt background distribution can then be found as the prob-

ability distribution Prmaximizing the entropy−∑
A Pr(A) log Pr(A),

subject to these constraints and the normalization

∑
A Pr(A) = 1.

As shown in [4], the optimal solution of this optimization prob-

lem is a product of independent Geometric distributions, one for

each vertex attribute-value a(v). Each of these Geometric distribu-

tions is of the form Pr(a(v) = z) = pav ·(1−pav )z , z ∈ N, wherepav
is the success probability and it is given by: pav = 1− exp(λra +λcv ),
with λra and λcv the Lagrange multipliers corresponding to the two

1
The presented results can be extended relatively straighforwardly for other cases.

constraint types. The optimal values of these multipliers can be

found by solving the convex Lagrange dual optimization problem.

Given these Geometric distributions for the attribute values un-

der the background distribution, we can now compute the proba-

bility of a pattern (U , S) as follows:

Pr(U , S) =
∏
v ∈U

∏
[ka, ℓa ]∈S

Pr(a(v) ∈ [ka , ℓa ]),

=
∏
v ∈U

∏
[ka, ℓa ]∈S

(
(1 − pav )ka − (1 − pav )ℓa+1

)
.

This can be used directly to compute the information content of a

pattern on given data, as the negative log of this probability. How-

ever, the pattern syntax is not directly suited to be applied to count

data, when different vertices have strongly differing total counts.

The reason is that the interval of each attribute is the same across

vertices, which is desirable to keep the syntax understandable. Yet,

if neighboring regions have very different total counts, it is less

likely to find any patterns, and, even if we do, end-users would still

need to know the total counts to interpret the patterns properly, as

the same interval is not equally surprising for each region.

p-values as attributes To address this problem, we propose to

search for the patterns not on the counts themselves, but rather on

their significance (i.e., p-value or tail probability), computed with

the background distribution as null hypothesis in a one-sided test.

More specifically, we define the quantities ĉa (v) as
ĉa (v) ≜ Pr(a(v) ≥ â(v)),

= (1 − pav )â(v),
and use this instead of the original attributes â(v). This transforma-

tion of â(v) to ĉa (v) can be regarded as a principled normalization

of the attribute values to make them comparable across vertices.

To compute the IC of a pattern with the transformed attributes

ĉa , wemust be able to evaluate the probability that ca (v) falls within
a specified interval [kca , ℓca ] under the background distribution for

a(v). This is given by:

Pr(ca (v) ∈ [kca , ℓca ]) = Pr

(
(1 − pav )a(v) ∈ [kca , ℓca ]

)
,

= Pr

(
a(v) ≤

log(kca )
log(1 − pav )

∧ a(v) ≥
log(ℓca )

log(1 − pav )

)
,

= (1 − pav )log1−pav (ℓca ) − (1 − pav )log1−pva (kca )+1,
= ℓca − (1 − pav ) · kca ,
= ℓca − kca + pavkca .

Thus, the IC of a pattern on the transformed attributes ĉ can be

calculated as:

IC(U , S) = − log(Pr(U , S)),

= −
∑

[kca , ℓca ]∈S

∑
v ∈U

log(ℓca − kca + pavkca ). (2)

In this paper, we focus on intervals [kca , ℓca ] where either kca =
0 (the minimal value) or ℓca = 1 (the maximal value). Such intervals

state that the values of an attribute are all significantly large
2
or

significantly small respectively, for all vertices inU . We argue such

2
Note empty regions have tail probabilities ĉa (v) = 1 for any attribute and thus fall

within any upper interval, but also IC = 0 for any attribute of that region as both

lca = 1 and pav = 1.
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Algorithm 1: SIAS-Miner-Enum(G = (V ,E, Â), D)
Input: G the input graph, D the maximum threshold of d

for used neighbourhoods Nd (v).
Output: Result , the set of CSEAs, andminDesc , which

stores the minimum description for each pattern.

1 // transformation to entity-relation model

2 D← transformToER(G ,D)

3 // enumeration of the patterns

4 Result←P-N-RMiner(D)

5 // computation of the minimum description for each found pattern

6 minDesc← {}
7 for ⟨(U , S ), N(U )⟩ ∈ Result do
8 bestDesc← ∅
9 DL-Optimise(U , ∅,N(U ), bestDesc)

10 minDesc[(U,S)]← bestDesc

intervals are easiest to interpret. The logarithmic terms in Eq. (2)

then simplify to log(ℓca ) and log(1 − kca + pavkca ) respectively.

3.2 Description length
As mentioned above, we describe the vertex set U in the pattern

as (the intersection of) a set of neighborhoods Nd (v), v ∈ V , with

a set of exceptions: vertices are in the intersection but not part of

U . The length of such a description is the sum of the description

lengths of the neighborhoods and the exceptions. More formally,

let us define the set of all neighborhoodsN = {Nd (v) | v ∈ V ∧d ∈
⟦0,D⟧}, (with D a positive integer representing the radius of the

neighborhood), and let N(U ) = {Nd (v) ∈ N | U ⊆ Nd (v)} be the
subset of neighborhoods that containU . The length of a description

ofU as the intersection of all neighborhoods in a subset X ⊆ N(U ),
along with the set of exceptions exc(X ,U ) ≜ ∩Nd (v)∈XNd (v) \U ,

is then quantified by the function f : 2
N(U ) ×U −→ R:

f (X ,U ) = (|X | + 1) · log(|N |) + (|exc(X ,U )| + 1) · log(|V |).
Indeed, the first term accounts for the description of the number

of neighborhoods (log(|N |), as there can be no more than |N |
neighborhoods in X , and for describing which neighborhoods are

involved (|X | log(|N |)). The second term accounts for the descrip-

tion of the number of exceptions (log(|V |)), and for describing the

exceptions themselves (|exc(X ,U ) log(|V |)).
In general, there are multiple ways of describing a given set of

nodes U , by using a various combinations of neighborhoods. The

best one is thus the one that minimizes f . This finally leads us to

the definition of the description length of a pattern as:

DL(U ) = min

X ⊆N(U )
f (X ,U ).

4 AN ENUMERATION APPROACH TO
MINING INTERESTING CSEA PATTERNS

SIAS-Miner-Enum mines interesting patterns using an enumerate-

and-rank approach. First, it enumerates all CSEA patterns (U , S)
that are closed simultaneously wrt. U , S , and the neighbourhood

description. Second, it ranks patterns according to their SI values.

An overview of the method is given in Algorithm 1 and explained

further below.

4.1 Pattern enumeration
In the first step, we enumerate candidate tuples (U , S) where the
verticesU can be concisely described as an intersection of neighbor-

hoodsX ⊆ N(U ). Disregarding the description for a moment, since

the pattern syntax is chosen such that each interval [ka , la ] ∈ S
should cover every vertex u ∈ U (Eq. 1), the IC of a tuple (U , S)
increases monotonically by adding vertices toU and intervals to S .
Hence, to decrease the number of candidate patterns and increase

computational efficiency we focus on closed patterns, i.e., tuples

(U , S) where no vertex can be added without enlarging intervals

and where no interval can be reduced without omitting vertices.

However, in Section 2 we additionally argued that a pattern

(U , S) where the vertices u ∈ U are unrelated will be difficult to

understand and remember, which we expressed in the DL. Since

computing DL(U ) is NP-Complete, it is not clear that enumeration

of closed patterns wrt. the SI can be done. Nonetheless, enumeration

of all closed (U , S) appears wasteful because most sets U will have

a high DL. What appears feasible is to restrict enumeration of sets

U that are exactly intersections of neighborhoods, i.e., a description

without any exceptions
3
.

While closed sets (U , S) may be most efficiently enumerated by

an itemset mining algorithm, if we want (U , S) to additionally be

closed with respect to intersections of neighbourhoods this yields

a relational schema with two relations: (1) vertices are connected

to all intervals that cover their attribute values, and (2) vertices are

connected to every neighborhood that they are contained in. A tool

that would indeed enumerate precisely the required closed patterns

and no other is RMiner [21].

More formally, the mapping from a graph to the required rela-

tional format is depicted in Fig. 2. Any vertex-attributed graph G
can be mapped to an entity-relational model D through (1) creation

of an entity type Ev containing all vertices in G, (2) creation of |Â|
entity types Ea1,Ea2, . . . Ea |Â | , one per attribute, and (3) creation

of an entity type EN containing all neighborhoods. Fig. 2 shows

how intervals and neighborhoods form a hierarchy. For neighbor-

hoods, the relationship holds that if a vertex vi is contained in a

neighborhood Nk (vj ), then it is also contained in all neighborhoods
with larger hop-size: vi ∈ Nk (vj ) ⇒ vi ∈ Nl (vj ) ∀l ≥ k . A similar

statement holds for intervals.

P-N-RMiner [15] is an extension of RMiner that exploits such

hierarchies for efficiency. Firstly, fewer connections (edges) are

needed between the entity types hence there is a smaller memory

requirement. Secondly, there may be computational gains: P-N-

RMiner is based on fixpoint-enumeration [6], whose theory states

that efficient enumeration of closed sets is possible if and only if

the problem can be cast as a strongly accessible set system (E,F ).
The efficiency gain over plain enumeration comes from a closure

operator, which can skip non-closed candidate patterns. For P-N-

RMiner, this closure works outside-in, i.e., closed patterns are found

by considering whether any entity (vertex in the relational repre-

sentation) can be added without reducing the set of entities that

are currently valid extensions to form a pattern under the pattern

syntax. Patterns in (P-N-)RMiner are called complete connected

subsets (CCSs) because all possible edges must exist and the ver-

tices in the relational representation must be connected, see Fig. 2,

3
Notice that such a description does not necessarily minimize the description length

of a vertex setU .
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Figure 2: Transformation from (1) a graph structure to (2) an entity-relationmodel withD = 1, and (3) an example of amaximal
complete connected subset (MCCS) pattern from P-N-RMiner.

right for an example. In the relational context, a pattern is called a

maximal CCS (MCCS) if no entity can be added, i.e., patterns we

referred to as closed in the discussion above. It is worth to notice

that an MCCS provides, in addition to a tuple (U , S), the set N(U )
of neighborhoods that containU , from which DL(U ) is computed.

Notice P-N-RMiner also ranks patterns based on interestingness

under a known-degree background model, but that is not useful

in our setting as the IC and the DL are very different here. Hence,

we only use it to enumerate all candidates. The computational

complexity is clearly exponential as the number of outputs may be

exponential in the size of the input, plus in this setting no fixpoint-

enumeration-based algorithmmay have polynomial-time delay [15].

Scalability experiments are presented in Sec. 5.

4.2 Computing DL(U )
The calculation of DL(U ) is NP-Complete and equivalent to Set

Cover: it consists in finding the optimal cover of the setU based on

unions of complements Ni (v) and exceptions {v} such that x ∈ U .

Nevertheless, we propose a branch-and-bound approach that takes

benefit from several optimisation techniques.

In order to find the optimal description of a pattern (U , S), we
explore the search space 2

N(U )
with a branch-and-bound approach

described in Algorithm 2. Let X and Cand be subsets of N(U )
that are respectively the current enumerated description and the

potential candidates that can be used to describe U . Initially, DL-

Optimise is called with X = ∅ and Cand = N(U ). In each call, a

neighbourhood e ∈ Cand is chosen and used to recursively explore

two branches: one made of the descriptions that contain e (by

adding e to X ), and the other one made of descriptions that do not

contain e (by removing e from Cand). Several pruning techniques

are used in order to reduce the search space and are detailed below.

Function LB (line 1) lower bounds the lengths of the descrip-
tions that can be generated in the subsequent recursive calls of

DL-Optimise. If LB is higher or equal than the length of the current

best description of U f (bestDesc,U ), there is no need to carry on

the exploration of the search subspace as no further description

can improve f . The principle of LB is to evaluate the maximum

reduction in exceptions that can be obtained when description X is

extended with neighbourhoods of Y :

дainY (X ,U ) = |exc(X ,U )| − |exc(X ∪ Y ,U )|, with Y ⊆ Cand. (3)

Algorithm 2: DL-Optimise(U , X , Cand, bestDesc)

Input:U the set of vertices to describe, X the current

enumerated description, Cand the set of candidates,

bestDesc the current best description found.

Output: bestDesc the best description found while

exploring the current search sub-space.

1 if LB(X ,U ,Cand) < f (bestDesc,U ) then
2 if Cand , ∅ then
3 pruneUseless(U , X , Cand)

4 pruneLowerBounded(U , X , Cand)

5 e ← argmine ′∈Cand f (X ∪ {e ′},U )
6 DL-Optimise(U , X ∪ {e}, Cand \ {e}, bestDesc)
7 DL-Optimise(U , X , Cand \ {e}, bestDesc)
8 else if f (X ,U ) < f (bestDesc,U ) then
9 bestDesc← X

This function can be rewritten using neighbourhood complements

asдainY (X ,U ) = |∪y∈Y (y ∩ exc(X ,U )) | 4. We can obtain an upper

bound of the gain function using the ordered set {д1, . . . ,д |Cand |}
of {дain {e }(X ,U ) | e ∈ Cand} such that дi ≥ дj if i ≤ j:

Property 1. дainY (X ,U ) ≤
∑ |Y |
i=1 дi , for Y ⊆ Cand.

Proof. Since the size of the union of sets is lower than the sum

of the set sizes, we have дainY (X ,U ) ≤
∑
y∈Y |y ∩ exc(X ,U )| ≤∑

y∈Y дain {y }(X ,U ) ≤
∑ |Y |
i=1 дi . □

This is the foundation of the function LB defined as

LB(X ,U ,Cand) = mini ∈⟦0, |Cand |⟧{(|X | + i + 1) × log(|N |)

+
(
1 +max

(
0, |exc(X ,U )| −∑i

j=1 дi
))
× log(|V |)} (4)

Property 2. f (X ∪ Y ,U ) ≥ LB(X ,U ,Cand), for all Y ⊆ Cand.

Proof. Based on Property 1, we have |exc(X ∪ Y ,U )| ≥ max(0,
|exc(X ,U )|−∑ |Y |i=1 дi ). This means that f (X∪Y ,U ) ≥ (|X |+ |Y |+1)×
log(|N |)+

(
1 +max{0, |exc(X ,U )| −∑ |Y |

j=1 дi }
)
× loд(|V |) and thus,

4 = |exc(X , U ) | − |exc(X ∪ Y , U ) | = |(∩x∈X x ) \U | − |(∩e∈X∪Y e) \U |
= |(∩x∈X x ) ∩U | − |((∩x∈X x ) ∩U ) ∩ (∩y∈Yy) |
= |(∩x∈X x ) ∩U ) \ (∩y∈Yy) | = |(∩x∈X x ) \U ) ∩ (∩y∈Yy) |
= |exc(X , U ) ∩ (∪y∈Yy) | = | ∪y∈Y (y ∩ exc(X , U )) |
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Algorithm 3: pruneUseless(U , X , Cand)

1 Cand← {e ∈ Cand | gain({e }, X , U ) > 0}

Algorithm 4: pruneLowerBounded(U , X ,Cand)

1 Cand← {ei ∈ Cand | ∀ej ∈ Cand \ {ei } : (exc(X ∪ {ej }, U ) ⊈
exc(X ∪{ei }, U )))∨(exc(X ∪{ej }, U ) = exc(X ∪{ei }, U )∧i < j)}

LB(X ,U ,Cand) ≤ (|X |+ |Y |+1)× log(|N |)+(1+max{0, |exc(X ,U )|
−∑ |Y |

j=1 дi }) × log(|V |) and it concludes the proof. □

In other terms, in the recursive calls, a description length will

never be lower than LB(X ,U ,Cand).
Function pruneUseless line 3 removes candidate elements

that can not improve the description length, that is candidates

e ∈ Cand for which дain({e},X ,U ) = 0. Such element does not

have the ability to reduce the number of exceptions in X . This
also implies that e will not reduce the number of exceptions for

descriptions X ∪ Y , with Y ⊆ Cand. Thus, such elements will not

decrease the description length of X ∪ Y .
Function pruneLowerBounded line 4 removes a candidate

e ∈ Cand if there is a candidate e ′ ∈ Cand that is always better

than e for all descriptions produced in subsequent recursive calls.

Property 3. Let e, e ′ ∈ Cand such that exc(X∪{e},U ) ⊆ exc(X∪
{e ′},U ). Then, for allY ⊆ Cand\{e, e ′}, we have f (X∪Y∪{e},U ) ≤
f (X ∪ Y ∪ {e ′},U )

Proof. The set of exceptions in X ∪Y ∪ {e} is equal to exc(X ∪
Y ∪ {e},U ) = exc(X ∪ {e},U ) ∩ exc(Y ,U ). Since exc(X ∪ {e},U ) ⊆
exc(X ∪ {e ′},U ), then exc(X ∪Y ∪ {e},U ) ⊆ exc(X ∪Y ∪ {e ′},U ).
As |X ∪Y ∪ {e}| = |X ∪Y ∪ {e ′}|, we can conclude that f (X ∪Y ∪
{e},U ) ≤ f (X ∪ Y ∪ {e ′},U ). □

Based on Property 3, pruneLowerBounded removes elements e ′ ∈
Cand such that exc(X ∪ {e},U ) ⊆ exc(X ∪ {e ′},U ). Notice that

even if an element e ′′ has been removed due to the lower bound of

e ′, the procedure is still correct since e ′′ is lower bound by e by the

transitivity of inclusion.

The last optimisation consists in choosing e ∈ Cand that min-

imises f (X∪{e},U ) (line 5 of Algorithm 2). This makes it possible to

quickly reach descriptions with low DL, and subsequently provide

effective pruning when used in combination with LB.

5 EXPERIMENTS
In this section, we report our experimental results. We start by

describing the real-world dataset we used, as well as the questions

we aim to answer. Then, we provide a thorough comparisonwith the

state-of-the-art algorithm Cenergetics [2]. Eventually, we provide

a qualitative analysis that demonstrates the ability of our approach

to achieve the desired goal. For reproducibility purposes, the source

code and the data are made available here.
5

Experimental setting. Experiments are performed on the real-

world dataset of the London graph. The London graph (|V | =
289, |E | = 544, |Â| = 10) is based on the social network Foursquare

6
.

5
https://goo.gl/2jvE8j

6
https://foursquare.com

Each vertex represents a district in London, and edges link adja-

cent districts. Each attribute stands for the number of places of a

given type (e.g. outdoors, colleges, residences, restaurants, etc.) in

each district. Considering all the numerical values of attributes is

computationally expensive and would lead to redundant results, we

pre-process the graph so that for each attribute, the values ĉa (v)
are binned into five quantiles.

Aims. As stated in Section 6, there is no approach that supports

the discovery of subjectively interesting attributed subgraphs in the

literature. The closest method to SIAS-Miner-Enum is Cenergetics

[2] that aims at discovering closed exceptional attributed subgraphs

involving overrepresented and/or underrepresented attributes, and

which mined the London graph used here in the experiments (and

on similar graphs of other cities). It assesses exceptionality with

the weighted relative accuracy (WRAcc) measure that accounts

for margins but cannot account for other prior knowledge. The

computational problemwe tackle is more complex than Cenergetics,

but how much is this overhead? Is it worth it in terms of pattern

quality? This empirical study aims to answer to these questions.

Quantitative experiments. Fig. 3 reports the execution time per

pattern, the number of discovered patterns, and the average quality

of the top 500 patterns (i.e., DL and SI) of SIAS-Miner-Enum and

Cenergetics according to the number of vertices, the number of

attributes and theminimum number of vertices of searched patterns.

We post-processed the results of Cenergetics in order to obtain

similar redescriptions of the vertices as in SIAS-Miner-Enum, butwe

do not consider this post-processing step in the reported execution

times. These tests reveal that the computational overhead of SIAS-

Miner-Enum is important: the discovery of a pattern by SIAS-Miner-

Enum is generally one to two orders of magnitude more costly

than Cenergetics. However, SIAS-Miner-Enum provides patterns

of better quality. Indeed, the average description length of the top

500 patterns discovered by SIAS-Miner-Enum is smaller than those

of Cenergetics and the SI of CSEA patterns is greater than the one

of the patterns extracted by Cenergetics.

Qualitative experiments. Finally, we show some examples of pat-

terns (with at least 5 vertices) discovered by both SIAS-Miner-Enum

and Cenergetics on London graph. The top 4 CSEA patterns dis-

covered by SIAS-Miner-Enum are given in Tab. 1 and displayed

in Fig. 4. Green cells represent vertices covered by a CSEA pat-

tern while blue cells are the centers, purples cells are the centers

that do not belong to the pattern, orange cells are centers that are

also exception (i.e., behave differently from the pattern but covered

by the description) and the red cells are normal exceptions. We

also report the top 4 patterns discovered by Cenergetics in Fig. 5.

Interestingly, CSEA patterns are more cohesive than Cenergetics

ones, described by at most two Neighborhoods, which eases the

assimilation by an analyst. Unexpectedly, the second best patterns

of SIAS-Miner-Enum and Cenergetics are somewhat similar: the

CSEA pattern covers two additional vertices and the two patterns

are in agreement on some overrepresented types of venues (e.g.,

nightlife, shops). Surprisingly, outdoor venues are consistently over-

represented in the CSEA pattern while such venues are considered

as limited by Cenergetics. This inconsistency may be due to some

extreme values in some regions that impact the mean and then the

value of the WRacc measure by Cenergetics.
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Figure 3: SIAS-Miner-Enum vs Cenergetics: runtime per pattern (first column), #patterns (second column), average description
length (third column) and subjective interestingness (fourth column) of the top 500 patterns for varying |V | (1st row), |A| (2nd
row) and a threshold on the minimum number of vertices in searched patterns (3rd row) for London graph (D = 3).

Figure 4: Top 4 patterns discovered in London graph by SIAS-
Miner-Enum (minVertices = 5, D = 3). Details are provided in
Tab. 1

Pattern ID Characteristics: S = {(ai , [li ,ki ])}
P1 {food: [0, 0.47]}+ , {college: [1, 1], event: [1, 1], art: [0.57, 1]}−
P2 {shop: [0, 0.43], nightlife: [0, 0.44], travel: [0, 0.44], college:

[0, 0.47], outdoors: [0, 0.47]}+
P3 {food: [0, 0.31]}+
P4 {food: [0, 0.47]}+

Table 1: Detailed characteristics of the top 6 patterns discov-
ered in London dataset by SIAS-Miner-Enum (see Fig. 4).

Summary. Even if our approach has an obvious computational

overhead compared to Cenergetics (the problem tackled is more

complex), these experiments show the ability of SIAS-Miner-Enum

to discover CSEA patterns that are more intuitive and informative.

6 RELATEDWORK
Several approaches have been designed to discover new insights

in vertex attributed graphs. The pioneering work of Moser et al.

[16] presents a method to mine dense homogeneous subgraphs,

i.e., subgraphs whose vertices share a large set of attributes. Simi-

larly, Günnemann et al. [10] introduce a method based on subspace

P1 : {professional}+
{shop}−

P2 : {shop, nightlife, food }+
{outdoors, travel, residence}−

P3 : {professional}− P4 : {professional}+ , {shop, food}−

Figure 5: Top 4 patterns discovered in London graph by
Cenergetics (minVertices = 5).

clustering and dense subgraph mining to extract non redundant

subgraphs that are homogeneous with respect to the vertex at-

tributes. Silva et al. [20] extract pairs made of a dense subgraph

and a Boolean attribute set such that the Boolean attributes are

strongly associated with the dense subgraphs. In [18], the authors

propose to mine the graph topology of a large attributed graph by

finding regularities among numerical vertex descriptors. The main

objective of all these approaches is to find regularities instead of

peculiarities within a large graph, whereas Exceptional Subgraph
Mining mines subgraphs with distinguishing characteristics.

Interestingly, a recent work [1] proposes to mine descriptions

of communities from vertex attributes, with a Subgroup Discovery

approach. In this supervised setting, each community is treated

as a target that can be assessed by well-established measures, like

7



WRAcc. In [12], the authors aim at discovering contextualized sub-

graphs that are exceptional with respect to a model of the data.

Restrictions on the attributes, that are associated to edges, are

used to generate subgraphs. Such patterns are of interest if they

pass a statistical test and have high value on an adapted WRAcc

measure. Similarly, [14] proposes to discover subgroups with excep-

tional transition behavior as assessed by a first-order Markov chain

model. The problem of exceptional subgraph mining in attributed

graphs was introduced in [2]. Based on an adaptation of WRAcc,

the method aims to discover subgraphs with homogeneous and

exceptional characteristics. In Section 5, we demonstrate that CSEA

patterns discovered by SIAS-Miner-Enum are more informative and

less complex than patterns discovered by the algorithm devised in

[2].

More generally, Subgroup Discovery [13, 17] aims to find descrip-

tions of sub-populations for which the distribution of a predefined

target value is significantly different from the distribution in the

whole data. Several quality measures have been defined to assess

the interest of a subgroup. The WRAcc is the most commonly used.

However, these measures do not take any prior knowledge into

account. Therefore, we can expect identified subgroups are less

informative. The problem of taking subjective interestingness into

account in pattern mining was already identified in [19] and has

seen a renewed interest in the last decade.

The interestingness measure employed here is inspired by the

FORSIED framework [3, 5], which defines the SI of a pattern as

the ratio between the IC and the DL. The IC is the amount of

information specified by showing a pattern to the user. The measure

is based on the gain from a Maximum Entropy background model

that delineates the current knowledge of a user, hence it is subjective,
i.e., particular to the modeled belief state.

P-N-RMiner [15], the tool used here for pattern enumeration, has

also been developed under FORSIED. However, the interestingness

measure in this paper is very different, because the information

contained in the patterns shown to the user does not align with the

output of P-N-RMiner. FORSIED has been applied to mine dense

subgraphs [22], but not to Exceptional Subgraph Mining, where we

also need to account for attribute values. A much faster CP-based

implementation of RMiner exists that directly searches for the top-1

most interesting pattern [11]. However, this tool does not support

structured attributes and the interestingness measure is different,

hence it could not be used directly in our problem setting.

7 CONCLUSION
We have introduced a new pattern language in attributed graphs.

A so-called CSEA pattern provides to the user a set of attributes

that have exceptional values throughout a subset of vertices. The

strength of the proposed pattern language lies in its independence

to a notion of support to assess the interestingness of a pattern.

Instead, the interestingness is defined based on information theory,

as the ratio of the information content (IC) over the description

length DL. The IC is the amount of information provided by show-

ing the user a pattern. The quantification is based on the gain from

a Maximum Entropy background model that delineates the current

knowledge of a user. Using a generically applicable prior as back-

ground knowledge, we provide a quantification of exceptionality

that (subjectively) appears to match our intuition. The DL assesses

the complexity of reading a pattern, the user being interested in

concise and intuitive descriptions. To this end, we proposed to de-

scribe a set of vertices as an intersection of neighborhoods within

a chosen distane of selected vertices, the distance and vertices mak-

ing up the description of the subgraph. We have shown how an

effective and principled algorithm can enumerate patterns of this

language. Extensive empirical results on two real-world datasets

confirm that CSEA patterns are intuitive, and the interestingness

measure aligns well with actual subjective interestingness. This

paper opens up several avenues for further research such as the

development of speed-ups of SIAS-Miner-Enum and how to in-

corporate non-ordinal attribute types in the pattern syntax and

interestingness measure.
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