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Abstract

Automatically recognizing entailment relations between pairs of natural language
sentences has so far been the dominion of classifiers employing hand engineered
features derived from natural language processing pipelines. End-to-end differ-
entiable neural architectures have failed to approach state-of-the-art performance
until very recently. In this paper, we propose a neural model that reads two sen-
tences to determine entailment using long short-term memory units. We extend
this model with a word-by-word neural attention mechanism that encourages rea-
soning over entailments of pairs of words and phrases. Furthermore, we present
a qualitative analysis of attention weights produced by this model, demonstrating
such reasoning capabilities. On a large entailment dataset this model outperforms
the previous best neural model and a classifier with engineered features by a sub-
stantial margin. It is the first generic end-to-end differentiable system that achieves
state-of-the-art accuracy on a textual entailment dataset.

1 Introduction

The ability to determine the semantic relationship between two sentences is an integral part of ma-
chines that understand and reason with natural language. Recognizing textual entailment (RTE) is
the task of determining whether two natural language sentences are (i) contradicting each other, (ii)
not related, or whether (iii) the first sentence (called premise) entails the second sentence (called
hypothesis). This task is important since many natural language processing (NLP) problems, such
as information extraction, relation extraction, text summarization or machine translation, rely on it
explicitly or implicitly and could benefit from more accurate RTE systems [Dagan et al., 2006].

State-of-the-art systems for RTE so far relied heavily on engineered NLP pipelines, extensive man-
ual creation of features, as well as various external resources and specialized subcomponents such
as negation detection [see for example Lai and Hockenmaier, 2014, Jimenez et al., 2014, Zhao et al.,
2014, Beltagy et al., 2015]. In contrast, end-to-end differentiable neural architectures failed to get
close to acceptable performance due to the lack of large high-quality RTE datasets. An end-to-end
differentiable solution to RTE is desirable, since it avoids specific assumptions about the underlying
language. In particular, there is no need for language features like part-of-speech tags or depen-
dency parses. Furthermore, a generic sequence-to-sequence solution allows to extend the concept of
capturing entailment across any sequential data, not only natural language.

Recently, Bowman et al. [2015] published the Stanford Natural Language Inference (SNLI) cor-
pus accompanied by a neural network with long short-term memory units [LSTM, Hochreiter and
Schmidhuber, 1997], which achieves an accuracy of 77.6% for RTE on this dataset. It is the first
time a generic neural model without hand-crafted features got close to the accuracy of classifier with
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engineered features for RTE. This can be explained by the high quality and size of SNLI compared
to the two orders of magnitude smaller and partly synthetic datasets so far used to evaluate RTE
systems. Bowman et al.’s LSTM encodes the premise and hypothesis as dense fixed-length vectors
whose concatenation is subsequently used in a multi-layer perceptron (MLP) for classification. In
contrast, we are proposing an attentive neural network that is capable of reasoning over entailments
of pairs of words and phrases by processing the hypothesis conditioned on the premise.

Our contributions are threefold: (i) We present a neural model based on LSTMs that reads two sen-
tences in one go to determine entailment, as opposed to mapping each sentence independently into
a semantic space (§2.2), (ii) We extend this model with a neural word-by-word attention mechanism
to encourage reasoning over entailments of pairs of words and phrases (§2.4), and (iii) We provide a
detailed qualitative analysis of neural attention for RTE (§4.1). Our benchmark LSTM achieves an
accuracy of 80.9% on SNLI, outperforming a classifier with hand-crafted lexical features tailored
to RTE by 2.7 percentage points. An extension with word-by-word neural attention surpasses this
strong benchmark LSTM result by 2.6 percentage points, setting a new state-of-the-art accuracy of
83.5% for recognizing entailment on SNLI.

2 Methods

In this section we discuss LSTMs (§2.1) and describe how they can be applied to RTE (§2.2). We
introduce an extension of an LSTM for RTE with neural attention (§2.3) and word-by-word attention
(§2.4). Finally, we show how such attentive models can easily be used for attending both ways: over
the premise conditioned on the hypothesis and over the hypothesis conditioned on the premise (§2.5).

2.1 LSTMs

Recurrent neural networks (RNNs) with long short-term memory (LSTM) units [Hochreiter and
Schmidhuber, 1997] have been successfully applied to a wide range of NLP tasks, such as ma-
chine translation [Sutskever et al., 2014, Bahdanau et al., 2014], constituency parsing [Vinyals et al.,
2014], language modeling [Zaremba et al., 2014] and recently RTE [Bowman et al., 2015]. LSTMs
encompass memory cells that can store information for a long period of time, as well as three types
of gates that control the flow of information into and out of these cells: input gates (Eq. 2), forget
gates (Eq. 3) and output gates (Eq. 4). Given an input vector xt at time step t, the previous output
ht−1 and cell state ct−1, an LSTM with hidden size k computes the next output ht and cell state ct
as

H =

[
xt

ht−1

]
(1)

it = σ(WiH+ bi) (2)

ft = σ(WfH+ bf ) (3)

ot = σ(WoH+ bo) (4)

ct = ft � ct−1 + it � tanh(WcH+ bc) (5)

ht = ot � tanh(ct) (6)

where Wi,Wf ,Wo,Wc ∈ R2k×k are trained matrices and bi,bf ,bo,bc ∈ Rk trained biases that
parameterize the gates and transformations of the input, σ denotes the element-wise application of
the sigmoid function and � the element-wise multiplication of two vectors.

2.2 Recognizing Textual Entailment with LSTMs

LSTMs can readily be used for RTE by independently encoding the premise and hypothesis as
dense vectors and taking their concatenation as input to an MLP classifier [Bowman et al., 2015].
This demonstrates that LSTMs can learn semantically rich sentence representations that are suitable
for determining textual entailment.

In contrast to learning sentence representations, we are interested in neural models that read both
sentences to determine entailment, thereby reasoning over entailments of pairs of words and phrases.
Figure 1 shows the high-level structure of this model. The premise (left) is read by an LSTM (A).
A second LSTM with different parameters is reading a delimiter and the hypothesis (right), but its
memory state is initialized with the last cell state of the previous LSTM (c5 in the example). We
use word2vec vectors [Mikolov et al., 2013] as word representations, which we do not optimize
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A wedding party taking pictures :: Someone got married
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Attention

(B) Attention

Figure 1: Recognizing textual entailment using two LSTMs (A), one over the premise and one over
the hypothesis, with attention only based on the last output vector (h9, B) or word-by-word attention
based on all output vectors of the hypothesis (h7, h8 and h9, C).

during training. Out-of-vocabulary words in the training set are randomly initialized by sampling
values uniformly from (−0.05, 0.05) and optimized during training.1 Out-of-vocabulary words en-
countered at inference time on the validation and test corpus are set to fixed random vectors. By not
tuning representations of words for which we have word2vec vectors, we ensure that at inference
time their representation stays close to unseen similar words for which we have word2vec embed-
dings. We use a linear layer to project word vectors to the dimensionality of the hidden size of the
LSTM, yielding input vectors xi. Finally, for classification we use a softmax layer over the output of
a non-linear projection of the last output vector (h9 in the example) into the target space of the three
classes (ENTAILMENT, NEUTRAL or CONTRADICTION), and train using the cross-entropy loss.

2.3 Attention

Attentive neural networks have recently demonstrated success in a wide range of tasks ranging from
handwriting synthesis [Graves, 2013], machine translation [Bahdanau et al., 2014], digit classifica-
tion [Mnih et al., 2014], image captioning [Xu et al., 2015], speech recognition [Chorowski et al.,
2015] and sentence summarization [Rush et al., 2015], to geometric reasoning [Vinyals et al., 2015].
The idea is to allow the model to attend over past output vectors (see Figure 1 B), thereby mitigating
the LSTM’s cell state bottleneck. More precisely, an LSTM with attention for RTE does not need to
capture the whole semantics of the premise in its cell state. Instead, it is sufficient to output vectors
while reading the premise and accumulating a representation in the cell state that informs the second
LSTM which of the output vectors of the premise it needs to attend over to determine the RTE class.

Let Y ∈ Rk×L be a matrix consisting of output vectors [h1 · · · hL] that the first LSTM produced
when reading the L words of the premise, where k is a hyperparameter denoting the size of em-
beddings and hidden layers. Furthermore, let eL ∈ RL be a vector of 1s and hN be the last output
vector after the premise and hypothesis was processed by the two LSTMs respectively. The atten-
tion mechanism will produce a vector α of attention weights and a weighted representation r of the
premise via

M = tanh(WyY +WhhN ⊗ eL) M ∈ Rk×L (7)

α = softmax(wTM) α ∈ RL (8)

r = YαT r ∈ Rk (9)

where Wy,Wh ∈ Rk×k are trained projection matrices, w ∈ Rk is a trained parameter vector and
wT its transpose. Note that the outer product WhhN ⊗eL is repeating the linearly transformed hN

as many times as there are words in the premise. Hence, the intermediate attention representation mi

1We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting in 3.65M
tunable parameters.
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(ith column vector in M) of the ith word in the premise is obtained from a non-linear combination
of the premise’s output vector hi (ith column vector in Y) and the transformed hN . The attention
weight for the ith word in the premise is the result of a weighted combination (parameterized by w)
of values in mi. We obtain the final sentence-pair representation used for classification from

h∗ = tanh(Wpr+WxhN ) h∗ ∈ Rk (10)

2.4 Word-by-word Attention

For determining whether one sentence entails another it can be a good strategy to check for entail-
ment or contradiction of individual aligned word- and phrase-pairs. To encourage such behavior we
employ neural word-by-word attention similar to Bahdanau et al. [2014], Hermann et al. [2015] and
Rush et al. [2015]. The difference is that we do not use attention to generate words, but to obtain a
sentence-pair encoding from fine-grained reasoning via soft-alignment of words and phrases in the
premise and hypothesis. In our case, this amounts to attending over the first LSTM’s output vectors
of the premise while the second LSTM processes the hypothesis one word at a time, thus generat-
ing attention weights αt over all output vectors of the premise for every word xt in the hypothesis
(Figure 1 C). This can be modeled as follows:

Mt = tanh(WyY + (Whht +Wrrt−1)⊗ eL) Mt ∈ RL×k (11)

αt = softmax(wTMt) αt ∈ RL (12)

rt = YαT
t + tanh(Wtrt−1) rt ∈ Rk (13)

The final sentence-pair representation is obtained from the last attention-weighted representation rL
of the premise and the last output vector hN using

h∗ = tanh(WprL +WxhN ) h∗ ∈ Rk (14)

2.5 Two-way Attention

Inspired by bidirectional LSTMs that read a sequence and its reverse for improved encoding [Graves
and Schmidhuber, 2005], we introduce two-way attention for RTE. The idea is simply to use the
same model that attends over the premise conditioned on the hypothesis to also attend over the
hypothesis conditioned on the premise by swapping the two sequences. This produces two sentence-
pair representations that we concatenate for classification.

3 Experiments

We conduct experiments on the Stanford Natural Language Inference corpus [SNLI, Bowman et al.,
2015]. This corpus is two orders of magnitude larger than other existing RTE corpora such as
Sentences Involving Compositional Knowledge [SICK, Marelli et al., 2014]. Furthermore, a large
part of training examples in SICK were generated heuristically from other examples. In contrast,
all sentence-pairs in SNLI stem from human annotators. The size and quality of SNLI make it a
suitable resource for training neural architectures such as the ones proposed in this paper.

We use ADAM [Kingma and Ba, 2014] for optimization with a first momentum coefficient of 0.9
and a second momentum coefficient of 0.999.2 For every model we perform a small grid search
over combinations of the initial learning rate [1E-4, 3E-4, 1E-3], dropout3 [0.0, 0.1, 0.2] and `2-
regularization strength [0.0, 1E-4, 3E-4, 1E-3]. Subsequently, we take the best configuration based
on performance on the validation set, and evaluate only that configuration on the test set.

4 Results and Discussion

Results on the SNLI corpus are summarized in Table 1. The total number of model parameters,
including tunable word representations, is denoted by |θ|W+M (without word representations |θ|M).

2Standard configuration recommended by Kingma and Ba.
3As in Zaremba et al. [2014], we apply dropout only on the inputs and outputs of the network.
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Table 1: Results on the SNLI corpus.

Model k |θ|W+M |θ|M Train Dev Test

LSTM [Bowman et al., 2015] 100 ≈ 10M 221k 84.4 - 77.6
Classifier [Bowman et al., 2015] - - - 99.7 - 78.2

LSTM shared 100 3.8M 111k 83.7 81.9 80.9
LSTM shared 159 3.9M 252k 84.4 83.0 81.4
LSTMs 116 3.9M 252k 83.5 82.1 80.9

Attention 100 3.9M 242k 85.4 83.2 82.3
Attention two-way 100 3.9M 242k 86.5 83.0 82.4

Word-by-word attention 100 3.9M 252k 85.3 83.7 83.5
Word-by-word attention two-way 100 3.9M 252k 86.6 83.6 83.2

To ensure a comparable number of parameters to Bowman et al.’s model that encodes the premise
and hypothesis independently but with one LSTM, we also run experiments with a single LSTM
(“shared” with k = 100) as opposed to two different LSTMs that read the premise and hypothesis
respectively. In addition, we compare our attentive models to two benchmark LSTMs whose hidden
sizes were chosen so that they have at least as many parameters as the attentive models. Since we are
not tuning word vectors for which we have word2vec embeddings, the total number of parameters
|θ|W+M of our models is considerably smaller. We also compare our models against the bench-
mark classifier used by Bowman et al., which constructs features from the BLEU score between the
premise and hypothesis, length difference, word overlap, uni- and bigrams, part-of-speech tags, as
well as cross uni- and bigrams.

LSTM We found that processing the hypothesis conditioned on the premise instead of encod-
ing each sentence independently gives an improvement of 3.3 percentage points in accuracy over
Bowman et al.’s LSTM. We argue this is due to information being able to flow from one sentence
representation to the other. Specifically, the model does not waste capacity on encoding the hypoth-
esis (in fact it does not need to encode the hypothesis at all), but can read the hypothesis in a more
focused way by checking words and phrases for contradictions and entailments based on the seman-
tic representation of the premise. One interpretation is that the LSTM is approximating a finite-state
automaton for RTE [c.f. Angeli and Manning, 2014]. Another difference to Bowman et al.’s model
is that we are using word2vec instead of GloVe and, more importantly, do not fine-tune these word
embeddings. The drop in accuracy from train to test set is less severe for our models, which suggest
that fine-tuning word embeddings could be a cause of overfitting.

Our LSTM outperforms a feature-engineered classifier by 2.7 percentage points. To the best of our
knowledge, this is the first instance of a neural end-to-end differentiable model to achieve state-of-
the-art performance on a textual entailment dataset.

Attention With attention we found a 0.9 percentage point improvement over a single LSTM with
a hidden size of 159, and a 1.4 percentage point increase over a benchmark model that uses two
LSTMs (one for the premise and one for the hypothesis). The attention model produces output
vectors summarizing contextual information of the premise that is useful to attend over later when
reading the hypothesis. Therefore, when reading the premise, the model does not have to build up
a semantic representation of the whole premise, but instead a representation that helps attending
over the right output vectors when processing the hypothesis. In contrast, the output vectors of the
premise are not used by the benchmark LSTMs. Thus, these models have to build up a representation
of the premise and carry it over through the cell state to the part that processes the hypothesis—a
bottleneck that can be overcome to some degree by using attention.

Word-by-word Attention Enabling the model to attend over output vectors of the premise for
each word in the hypothesis yields another 1.2 percentage point improvement compared to attending
conditioned only on the last output vector of the premise. We argue that this is due to the model being
able to check for entailment or contradiction of individual words in the hypothesis, and demonstrate
this effect in the qualitative analysis below.
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(a) (b)

(c) (d)

Figure 2: Attention visualizations.

Two-way Attention Allowing the model to also attend over the hypothesis based on the premise
does not seem to improve performance on RTE. We suspect that this is due to entailment being an
asymmetric relation. Hence, using the same LSTM to encode the hypothesis (in one direction) and
the premise (in the other direction) might lead to noise in the training signal. This could be addressed
by training different LSTMs at the cost of doubling the number of model parameters.

4.1 Qualitative Analysis

It is instructive to analyze which output representations the model is attending over when deciding
the class of an RTE example. Note that interpretations based on attention weights have to be taken
with care since the model is not forced to solely rely on representations obtained from attention
(see Eq. 10 and 14). In the following we visualize and discuss the attention patterns of the pre-
sented attentive models. For each attentive model we hand-picked examples from ten samples of the
validation set.

Attention Figure 2 shows to what extent the attentive model focuses on contextual representations
of the premise after both LSTMs processed the premise and hypothesis respectively. Note how the
model pays attention to output vectors of words that are semantically coherent with the premise
(“riding” and “rides”, “animal” and “camel”, 2a) or in contradiction, as caused by a single word
(“blue” vs. “pink”, 2b) or multiple words (“swim” and “lake” vs. “frolicking” and “grass”, 2c).
Interestingly, the model shows contextual understanding by not attending over “yellow”, the color
of the toy, but “pink”, the color of the coat. However, for more involved examples with longer
premises we found that attention is more uniformly distributed (2d). This suggests that conditioning
attention only on the last output has limitations when multiple words need to be considered for
deciding the RTE class.

Word-by-word Attention Visualizations of word-by-word attention are depicted in Figure 3. We
found that word-by-word attention can easily detect if the hypothesis is simply a reordering of words
in the premise (3a). Furthermore, it is able to resolve synonyms (“airplane” and “aircraft”, 3c) and
capable of matching multi-word expressions to single words (“garbage can” to “trashcan”, 3b). It is
also noteworthy that irrelevant parts of the premise, such as words capturing little meaning or whole
uninformative relative clauses, are correctly neglected for determining entailment (“which also has
a rope leading out of it”, 3b).

Word-by-word attention seems to also work well when words in the premise and hypothesis are
connected via deeper semantics or common-sense knowledge (“snow” can be found “outside” and a
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Figure 3: Word-by-word attention visualizations.
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“mother” is an “adult”, 3e and 3g). Furthermore, the model is able to resolve one-to-many relation-
ships (“kids” to “boy” and “girl”, 3d)

Attention can fail, for example when the two sentences and their words are entirely unrelated (3f).
In such cases, the model seems to back up to attending over function words, and the sentence-pair
representation is likely dominated by the last output vector (see Eq. 14).

5 Conclusion

In this paper, we show how the state-of-the-art in recognizing textual entailment on a large, human-
curated and annotated corpus, can be improved with general end-to-end differentiable models. Our
results demonstrate that LSTM recurrent neural networks that read pairs of sequences to produce
a final representation from which a simple classifier predicts entailment, outperform both a neural
baseline as well as a classifier with hand-engineered features. Furthermore, extending these models
with attention over the premise provides further improvements to the predictive abilities of the sys-
tem, resulting in a new state-of-the-art accuracy for recognizing entailment on the Stanford Natural
Language Inference corpus.

The models presented here are general sequence models, requiring no appeal to natural language
specific processing beyond tokenization, and are therefore a suitable target for transfer learning
through pre-training the recurrent systems on other corpora, and conversely, applying the models
trained on this corpus to other entailment tasks. Future work will focus on such transfer learning
tasks, as well as scaling the methods presented here to larger units of text (e.g. paragraphs and
entire documents) using hierarchical attention mechanisms. Furthermore, we aim to investigate the
application of these generic models to non-natural language sequential entailment problems.
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