Computer Science > Information Retrieval
[Submitted on 8 May 2019 (v1), last revised 24 May 2019 (this version, v2)]
Title:FAQ Retrieval using Query-Question Similarity and BERT-Based Query-Answer Relevance
View PDFAbstract:Frequently Asked Question (FAQ) retrieval is an important task where the objective is to retrieve an appropriate Question-Answer (QA) pair from a database based on a user's query. We propose a FAQ retrieval system that considers the similarity between a user's query and a question as well as the relevance between the query and an answer. Although a common approach to FAQ retrieval is to construct labeled data for training, it takes annotation costs. Therefore, we use a traditional unsupervised information retrieval system to calculate the similarity between the query and question. On the other hand, the relevance between the query and answer can be learned by using QA pairs in a FAQ database. The recently-proposed BERT model is used for the relevance calculation. Since the number of QA pairs in FAQ page is not enough to train a model, we cope with this issue by leveraging FAQ sets that are similar to the one in question. We evaluate our approach on two datasets. The first one is localgovFAQ, a dataset we construct in a Japanese administrative municipality domain. The second is StackExchange dataset, which is the public dataset in English. We demonstrate that our proposed method outperforms baseline methods on these datasets.
Submission history
From: Tomohide Shibata [view email][v1] Wed, 8 May 2019 00:33:37 UTC (109 KB)
[v2] Fri, 24 May 2019 00:14:18 UTC (110 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.